Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Рыбаков. Книга по ПАЗОС новая.doc
Скачиваний:
59
Добавлен:
07.05.2019
Размер:
3.7 Mб
Скачать

1.2. Теплообменные процессы

1.2.1. Теплопроводность

Известно три способа переноса теплоты: за счет теплопроводности, конвекции и радиации [1].

Теплопроводностью называется перенос теплоты внутри твердого тела, неподвижной жидкости или газа. Количество переносимой теплоты при этом способе описывается законом теплопроводности Фурье: количество теплоты dQ, переносимое посредством теплопроводности через элемент поверхности dF, перпендикулярный к тепловому потоку, за время dτ, прямо пропорционально температурному градиенту dt/dn, площади поверхности и времени:

(1.11)

Тепловой поток по закону Фурье:

(1.12)

Знак минус в уравнениях (1.11) и (1.12) показывает, что теплота переносится в сторону убывания температуры. Коэффициент λ в уравнении Фурье называется коэффициентом теплопроводности, имеющим размерность [Дж/(м∙К∙с)].

Коэффициент теплопроводности показывает, какое количество теплоты переносится за счет теплопроводности за одну секунду при разности температур один градус на расстоянии в единицу длины нормали к изотерме поверхности.

Теплопроводность зависит от физической природы тела, его структуры, температуры и давления. Наибольшей теплопроводностью обладают металлы, наименьшей – газы.

Если написать уравнение теплопроводности по трем направлениям x, y, z для элементарного параллелепипеда с ребрами dx, dy, dz и сложить переносимые количества теплоты, то получим следующее выражение:

(1.13)

Эта теплота изменила энтальпию параллелепипеда на следующую величину:

(1.14)

где Ср – удельная теплоемкость при постоянном давлении.

Приравняв правые части уравнений (1.13) и (1.14), получим дифференциальное уравнение теплопроводности Фурье (второй закон Фурье):

(1.15)

Множитель λ/Ср называется коэффициентом температуропроводности, обозначается буквой α и характеризует тепловую инерцию тела. Размерность этого коэффициента [м2/с]. Она совпадает с размерностью кинематической вязкости, но никак не связана с его физическим смыслом.

Дифференциальное уравнение теплопроводности Фурье можно переписать в следующем виде:

(1.16)

где – оператор Лапласа.

1.2.2. Конвекция

Под конвективным теплообменом понимают процесс распространения тепла в жидкости (газе) от поверхности твердого тела или к его поверхности одновременно конвекцией и теплопроводностью. В неподвижной жидкости или газе теплота переносится за счет теплопроводности. В движущейся жидкости появляется еще один механизм переноса теплоты за счет перемешивания. Нагретые частицы жидкости, попадая в окружение холодных частиц, отдают им свою теплоту. Скорость переноса теплоты при этом тем выше, чем интенсивнее перемешивание, то есть чем выше степень турбулизации потока теплоносителя. Следовательно, конвекционный теплообмен включает в себя оба механизма переноса теплоты, а их вклад зависит от гидродинамических характеристик движения жидкости.

Теория гидравлического трения предполагает, что в пристеночной области формируется ламинарный слой, толщина которого определяет характер взаимодействия основного потока со стенкой. Этот слой будет влиять и на характер теплоотдачи от стенки жидкости и наоборот. В ядре потока, где жидкость движется в турбулентном режиме, преобладает перенос теплоты за счет перемешивания. В ламинарном пристеночном слое перемешивание отсутствует, поэтому теплота через этот слой переносится за счет теплопроводности, а интенсивность этого процесса определяется толщиной ламинарного слоя. Последняя зависит от физических свойств жидкости, входящих в критерий Прандтля:

(1.17)

где μ – вязкость жидкости,

ρ – плотность ее,

С – удельная теплоемкость,

λ – удельная теплопроводность жидкости.

Критерий Прандтля имеет и другое написание:

(1.18)

где v – кинематическая вязкость жидкости,

α – коэффициент температуропроводности.

Толщина гидравлического ламинарного слоя, определяющего гидравлическое трение, совпадает с толщиной слоя, определяющего теплоотдачу, только в случае, если Pr = 1. Обычно для жидкости критерий Прандтля больше единицы, а для газов меньше или равен единице.

Количество теплоты, отдаваемое стенкой жидкости, рассчитывают по закону теплоотдачи Ньютона: количество теплоты dQ, отдаваемое за время dτ поверхностью стенки dF, имеющей температуру tст, жидкости температурой tж, прямо пропорционально dF и разности температур tст - tж:

dQ= a dF (tст – tж) dτ, (1.19)

где акоэффициент теплоотдачи, который показывает, какое количество теплоты передается 1 м2 поверхности стенки жидкости (или от жидкости к стенке) в течение 1 с при разности температур между стенкой и жидкостью 1о. Он имеет размерность [Дж/м2 ∙К∙с].

Коэффициент теплоотдачи зависит от факторов, определяющих процесс переноса в пристеночном слое. Это физические свойства жидкости – теплопроводность, удельная теплоемкость, коэффициент объемного расширения, а также геометрические характеристики стенки.