Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Рыбаков. Книга по ПАЗОС новая.doc
Скачиваний:
59
Добавлен:
07.05.2019
Размер:
3.7 Mб
Скачать

3.5. Химические, физико-химические и биологические методы очистки и обезвреживания сточных вод

3.5.1. Химическая очистка сточных вод

Химическая или реагентная очистка производственных сточных вод может применяться как самостоятельный метод перед подачей производственных сточных вод в систему оборотного водоснабжения, спуском их в водоем или городскую канализационную сеть. Химическую очистку в ряде случаев целесообразно использовать перед биологической или физико-химической очисткой. Химическая обработка находит применение для дезинфекции и обесцвечивания производственных сточных вод или извлечения из них различных компонентов [1 – 4, 11].

Нейтрализация. В технологических процессах производственные сточные воды содержат щелочи NaOH, КОН, кислоты HCl, H2SO4, H3PO4, а также соли металлов, образованных на основе кислот или щелочей. Эти воды приводят к коррозии материалов канализационных сооружений, нарушают биохимические процессы в биологических окислителях и водоемах, образуют соли тяжелых металлов. Наиболее агрессивными являются кислые и щелочные стоки, которые необходимо подвергать нейтрализации. В результате нейтрализации в водных растворах происходит реакция между гидратированными ионами водорода и ионами гидроксида, содержащимися соответственно в сильных кислотах и основаниях, с образованием молекулы воды и гидроксида металлов. В результате рН среды приближается к 7. Указанные реакции и способы нейтрализации подробно рассмотрены в главе 1. Здесь же рассмотрим расчет расхода реагентов.

Расход щелочного (кислого) реагента на нейтрализацию 1 т кислоты (щелочи), содержащейся в сточных водах, определяется по формуле

(3.17)

где С – концентрация кислоты (щелочи) или солей металлов, содержащихся в сточной воде, кг/м3;

M1 – молекулярная масса щелочного (кислого) реагента, г-моль;

М2 – молекулярная масса кислоты (щелочи) или солей металлов, содержащихся в сточной воде, г-моль.

В качестве реагента для нейтрализации используют любые щелочи, кислоты или их соли (NaOH, KOH, H2SO4, известняк, доломит, мел, мрамор, магнезит, сода и др.).

Процессы нейтрализации осуществляют в специальных реакторах, оборудованных перемешивающим устройством, и при необходимости проветривания–системой вытяжной вентиляции. Расчет реакторов достаточно подробно изложен в книге [1].

Кроме нейтрализации к химическим методам очистки относятся осаждение, окисление и электрохимическая обработка. Химизм этих процессов рассмотрен в главе 1.

Электрохимическая обработка широко используется для очистки сточных вод от шестивалентного хрома. Технология очистки основана на пропускании постоянного электрического тока через сточную воду, находящуюся в открытых или закрытых электролизных ваннах, в которых размещены попеременно чередующиеся стальные аноды и катоды. При этом сточная вода не должна содержать механические примеси с гидравлической крупностью (скоростью осаждения или всплывания) более 0,0003 м/с и концентрацией более 0,05 кг/м3. Очистка сточных вод от соединений шестивалентного хрома основана на реакции восстановления бихромат- и хромат-ионов ионами трехвалентного железа. Трехвалентное железо образуется при электролитическом растворении анода и при окислении гидроксида Fe(ОН)2, возникающего в сточной воде при взаимодействии ионов Fe2+ и ОН (при рН ≥ 5,5).

В промышленных условиях биохимическую очистку сточных вод от соединений хрома проводят на установках, использующих в качестве питательной среды городские бытовые сточные воды со средним значением БПК 0,1 г/л. На рис. 3.17. представлена схема установки биохимической очистки хромсодержащих сточных вод гальванического цеха. Бытовые сточные воды с расходом 0,023 м3/с из отстойника 1 насосом подают в смеситель 2, куда одновременно поступают хромсодержащие (до 85 мг/л) сточные воды с расходом 0,013 м3/с и активный ил, содержащий бактерии рода Pseudomonas. Из смесителя сточные воды с активным илом поступают в биовосстановители 3, где происходит процесс биохимического восстановления хроматов с образованием гидроксида хрома. Процесс восстановления идет при постоянном перемешивании смеси и поддержании активного ила во взвешенном состоянии. Из биовосстановителей сточная вода поступает в отстойник 4, отстаивается и очищенная от хрома направляется в резервуар 5. В этот же резервуар сбрасывается избыточный активный ил с гидроксидом хрома и осадок сточных вод из отстойника 1. Осевший активный ил из отстойника 4 перекачивается в смеситель 2 для поддержания в биовосстановителях концентрации, равной 7 г/л. Из резервуара 5 сточная вода перекачивается в канализацию и далее поступает в биологические установки станции водоочистки, где в первичных отстойниках осаждается гидроксид хрома.

Рис. 3.17. Схема установки биохимической очистки хромсодержащих

сточных вод

1 – отстойник бытовых вод; 2 – смеситель; 3 – биовосстановители; 4 – отстойник;

5 – резервуар