Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Рыбаков. Книга по ПАЗОС новая.doc
Скачиваний:
59
Добавлен:
07.05.2019
Размер:
3.7 Mб
Скачать

2.2.4. Расчет высоты трубы для рассеивания газовоздушных выбросов

Зачастую при реконструкции предприятия возникают проблемы, связанные с рассеиванием загрязняющих веществ в атмосфере: имеющиеся мощности по очистке отходящих газов не гарантируют ПДВ, расчетная величина СЗЗ больше, чем расстояние от предприятия до жилой зоны и другие проблемы. Для их решения необходима установка дорогостоящего комплекса по очистке отходящих газов либо переход на другую технологию. Но есть более простое решение – увеличение высоты трубы для рассеивания выбросов. Это гарантирует достижение ПДВ, предприятие по классу опасности становится менее опасным, и СЗЗ предприятия уменьшается.

В основе расчета минимальной высоты трубы лежит условие, что величина концентрации вредного вещества в приземном слое атмосферы не должна превышать его ПДКмакс разовую, т.е. См = ПДКмакс разовая. Учитывая это равенство, по формуле (2.8) определяется Нмин.

2.3. Методы очистки отходящих газов от аэрозолей

Выделяют следующие активные методы очистки отходящих газов:

1. Механические (физические):

а) очистка в пылеосадительных камерах;

б) очистка в сухих механических пылеуловителях;

в) очистка в мокрых пылеуловителях;

г) очистка газов в фильтрах;

2. Промывные (абсорбционные);

3. Электростатические;

4. Адсорбционные;

5. Каталитические;

6. Термические.

Основные меры защиты атмосферы от загрязнения промышленными пылями и туманами предусматривают широкое использование пыле- и туманоулавливающих аппаратов и систем. Исходя из современной классификации пылеулавливающих систем, основанной на принципиальных особенностях процесса очистки, пылеочистное оборудование можно разделить на четыре группы: сухие пылеуловители, мокрые пылеуловители, электрофильтры и фильтры. Пылеуловители различных типов используют при повышенных концентрациях примесей в воздухе. Фильтры используются для тонкой очистки воздуха с концентрацией примесей менее 100 мг/м3. Если требуется тонкая очистка воздуха при высоких начальных концентрациях примесей, то ее проводят в системе последовательно соединенных пылеуловителей и фильтров.

2.3.1. Сухие пылеуловители

К сухим пылеуловителям относятся все аппараты, в которых отделение частиц примесей от воздушного потока происходит механическим путем за счет сил гравитации, инерции. Конструктивно сухие пылеуловители разделяют на пылеосадительные камеры, циклоны, ротационные, вихревые, радиальные, жалюзные пылеуловители и др.

Наиболее просты по конструкции и в эксплуатации пылеосадительные камеры, в которых частицы пыли отделяются от газового потока под действием сил тяжести (рис. 2.3). Главное предназначение аппарата очистки – обеспечение определенного времени пребывания газового потока в обособленном пространстве и непрерывного отведения осевшей пыли из камеры улавливания. Основные трудности очистки газов с помощью осадительных камер обусловлены полидисперсностью пылей, размеры частиц которых распределяются по закону нормального распределения. В этих условиях экономически приемлемым может быть выделение с помощью этих аппаратов крупных частиц размером не менее 25-50 мкм. Часто при этом степень очистки не превышает 40-50%, что приводит к необходимости использовать более совершенные конструкции аппаратов механической очистки газов.

Рис. 2.3. Схемы пылеосадительных камер

а – простейшая камера; б – камера с перегородками; в – многополочная камера; 1 – кор­пус; 2 – бункеры; 3 – перегородки; 4 – полка

Широкое применение для сухой очистки газов получили циклоны различных типов (рис. 2.4).

Рис. 2.4. Конструкция циклона

1 – корпус; 2 – патрубок для ввода газового потока; 3 – выходная труба для очищенного газа; 4 – бункер для сбора пыли

Газовый поток вводится в циклон через патрубок 2 по касательной к внутренней поверхности корпуса 1 и совершает вращательно-поступательное движение вдоль корпуса к бункеру 4. Под действием центробежной силы частицы пыли образуют на стенке циклонов пылевой слой, который вместе с частью газа попадает в бункер. Отделение частиц пыли от газа, попавшего в бункер, происходит за счет поворота газового потока в бункере на 180о. Освободившись от пыли, газовый поток образует вихрь и выходит из бункера, давая начало вихрю газа, покидающему циклон через выхлопную трубу 3. Для нормальной работы циклона необходима герметичность бункера. Если бункер негерметичен, то за счет подсоса наружного воздуха происходит вынос пыли с потоком через выходную трубу.

Для очистки газов от пыли с успехом применяются цилиндрические (ЦН-11, ЦН-15, ЦН-15У, ЦН-24) и конические (СК-ЦН-34, СК-ЦН-34М, СДК-ЦН-33) циклоны, разработанные институтом НИИОГАЗ.

Расчет циклонов ведется методом последовательных приближений в следующем порядке:

1. Задаваясь типом циклона, определяют оптимальную скорость газа wопт в сечении циклона диаметром D по следующим данным.

Тип циклона: ЦН-24; ЦН-15У; ЦН-15; ЦН-11; СДК-ЦН-33; СК-ЦН-34

wопт, м/с 4,5 3,5 3,5 3,5 2,0 1,7

2. Вычисляют диаметр циклона по формуле

м, (2.12)

где Q – объемный расход воздуха, проходящего через циклон, м3/ч.

3. По выбранному диаметру циклона находят действительную скорость движения газа в циклоне:

м/с, (2.13)

где n – число циклонов.

Действительная скорость в циклоне не должна отклоняться от оптимальной более чем на 15%.

4. Определяют коэффициент гидравлического сопротивления:

ζ = k1 k2 ζ500 , (2.14)

где k1 – поправочный коэффициент на диаметр циклона,

k2 – поправочный коэффициент на запыленность газов,

ζ500 – коэффициент гидравлического сопротивления одиночного циклона диаметром 500 мм.

Эти коэффициенты определяются по специальным таблицам, например, приведенным в учебнике под редакцией С.В.Белова [3].

5. Гидравлическое сопротивление циклона (∆р) вычисляют как разность давлений воздушного потока на входе (рвх) и на выходе (рвых) из аппарата:

(2.15)

где ρ и w – плотность и скорость воздуха в расчетном сечении аппарата.

6. Эффективность очистки газа в циклоне определяют по формуле

η = 0,5 [1 + Ф(х)], (2.16)

где Ф(х) – табличная функция от параметра х, определенного по методике, изложенной в учебнике С.В.Белова [3].

Кроме циклонов, в настоящее время разработаны ротационные, вихревые, радиальные и жалюзийные пылеуловители.