Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Рыбаков. Книга по ПАЗОС новая.doc
Скачиваний:
59
Добавлен:
07.05.2019
Размер:
3.7 Mб
Скачать

1.3.6. Экстракция

Экстракцияпроцесс избирательного извлечения одного или нескольких растворимых компонентов из растворов или твердых тел с помощью жидкого растворителя – экстрагента. Если вещество извлекается из жидких систем, то процесс называется жидкостной экстракцией – извлечение растворенного в одной жидкости вещества или группы веществ другой жидкостью, которая не смешивается или частично не смешивается с первой.

В общем виде процесс экстрагирования из твердого тела (выщелачивание) можно разбить на 4 стадии:

- проникновение эктрагента в поры твердого тела;

- растворение извлекаемого вещества экстрагентом;

- диффузионный перенос извлекаемого вещества к поверхности куска или частицы сырья;

- перенос извлекаемого вещества с поверхности сырья в жидкую фазу – экстрагент.

В зависимости от вида очищаемого вещества отдельные стадии процесса могут отсутствовать вовсе, но чаще от скорости переноса на одной из стадий зависит скорость процесса в целом.

Расчет процессов экстрагирования выполняют исходя из основного уравнения массопередачи. Количество извлекаемого вещества при экстрагировании из твердого тела зависит от скорости внутренней диффузии и определяется по следующему уравнению:

(1.49)

где Dвн – коэффициент внутренней «стесненной» диффузии, м2/с;

L – минимальный размер твердого тела, м;

F – суммарная поверхность твердого тела, м2;

ΔC – разность между средней концентрацией вещества внутри твердого тела и средней концентрацией вещества в растворе, окружающем тело, кг/м3;

τ – продолжительность процесса, с.

Процесс жидкостной экстракции основан на распределении извлекаемого вещества в смеси двух взаимонерастворимых жидкостей соответственно его растворимости в них. Отношение взаимно уравновешивающихся концентраций в двух несмешивающихся растворителях при достижении равновесия является постоянным и называется коэффициентом распределения:

(1.50)

где Сэ , Ср – концентрации извлекаемого вещества в экстрагенте и очищаемом растворе.

После достижения равновесия концентрация экстрагируемого вещества в экстрагенте значительно выше, чем в перерабатываемой растворе. После экстракции раствор и насыщенный экстрагент разделяются. Затем сконцентрированное в экстрагенте вещество отделяется от растворителя и может быть утилизировано. Этот процесс называется реэкстракция. Экстрагент после этого используется вновь в процессе очистки.

1.3.7. Сушка

Сушка – удаление влаги из материалов (продуктов, изделий) при их подготовке к транспортировке, переработке, использованию или захоронению. Материалы, подвергаемые сушке, можно разделить на две группы: твердые кристаллические и аморфные тела. Различные тела неодинаково взаимодействуют с содержащейся в них влагой, по-разному ее связывают. Академик П.А.Ребиндер предложил классификацию форм связи влаги на основе энергии связи:

- механическая – влага смачивания, содержащаяся в капиллярах и микрокапиллярах. Эта форма связи наименее прочная, такую влагу можно удалить путем механического воздействия, например, прессованием или в центрифуге;

- физико-химическая форма связи – адсорбционная, осмотическая и структурная влага, содержащаяся в клетках и микрокапиллярах. Для разрушения этой формы связи требуется намного больше энергии, чем при удалении влаги смачивания. При этом для удаления адсорбционной, осмотической и структурной влаги требуется ее испарение;

химическая форма связи наиболее прочная. Это ионная связь (NаОН) и вода в кристаллогидратах (СuSO4 ∙ 5H2O). Эта связь может быть разрушена либо путем химического воздействия, либо нагревом до высоких температур – прокаливанием.

Анализируя виды связи влаги с материалом, можно сделать вывод, что сначала целесообразно удалить влагу из материала механическим способом и только затем перейти к тепловой сушке.

Самый распространенный способ тепловой сушки – конвективный. В этом способе осуществляется конвективный перенос теплоты от нагретого сушильного агента к материалу. В качестве сушильных агентов используются топочные и инертные газы, а также воздух. Сушильный агент выполняет и вторую, не менее важную задачу – поглощает образовавшийся водяной пар и выводит его из сушилки. Таким образом, интенсивность процесса зависит от скорости переноса массы этой влаги в сушильный агент. Самым распространенным сушильным агентом является предварительно подогретый воздух.

Выделяют другие способы тепловой сушки, например кондуктивный или контактный, когда материал нагревается при непосредственном контакте с поверхностью сушилки или сушка в инфракрасных лучах, как правило, комбинируют с конвективным способом.