- •В.М.Найдыш Концепции современного естествознания
- •Предисловие
- •Введение Естествознание как отрасль научного познания
- •B.I. Понятие культуры
- •В.2. Материальная и духовная культура
- •В.З. Наука как компонент духовной культуры
- •В.4. Проблема культур в науке: от конфронтации к сотрудничеству
- •В.5. Структура естественнонаучного познания
- •Часть первая Основные исторические периоды развития естествознания
- •1. Накопление рациональных знаний в системе первобытного сознания
- •1.1. Повседневное, стихийно-эмпирическое знание
- •1.2. Зарождение счета
- •1.3. Мифология
- •2. Наука в цивилизациях древности
- •2.1. Становление цивилизации
- •2.1.1. Неолитическая революция
- •2.1.2. Рационализация форм деятельности и общения
- •2.1.3. Разделение труда и развитие духовной культуры
- •2.1.4. Возникновение письменности
- •2.1.5. «Культурное пространство» древневосточных цивилизаций
- •2.2. Развитие рациональных знаний в эпоху классообразования цивилизаций Древнего Востока
- •2.2.1. От Мифа к Логосу (Науке)
- •2.2.2. Географические знания.
- •2.2.3. Биологические, медицинские и химические знания
- •2.2.4. Астрономические знания
- •2.2.5. Математические знания
- •3. Создание первой естественнонаучной картины мира в древнегреческой культуре
- •3.1. Культурно-исторические особенности древнегреческой цивилизации
- •3.2. От Хаоса к Космосу
- •3.3. Категория субстанции
- •3.4. Мир как число
- •3.4.1. Пифагорейский союз
- •3.4.2. Математические и естественно-научные достижения пифагореизма
- •3.5. Формирование первых естественнонаучных программ
- •3.5.1. Великое открытие элеатов
- •3.5.2. Атомистическая программа
- •3.5.3. Математическая программа
- •3.6. Физика и космология Аристотеля
- •3.6.1. Учение Аристотеля о материи и форме
- •3.6.2. Космология Аристотеля
- •3.6.3. Основные представления аристотелевской механики
- •3.7. Естествознание эллинистически-римского периода
- •3.7.1. Культура эллинизма
- •3.7.2. Александрийская математическая школа
- •3.7.3. Развитие теоретической и прикладной механики
- •3.8. Развитие древнегреческой астрономии
- •3. 8.1. Становление математической астрономии
- •3.8.2. Геоцентрическая система Птолемея
- •3.9. Античные воззрения на органический мир
- •3. 9.1. Античные толкования проблемы происхождения и развития живого
- •3.9. 2. Биологические воззрения Аристотеля
- •3. 9.3. Накопление рациональных биологических знаний в античности
- •3.9.4. Античные представления о происхождении человека
- •3.10. Упадок античной науки
- •4. Естествознание в эпоху средневековья
- •4.1. Особенности средневековой духовной культуры
- •4.1.1. Доминирование ценностного над познавательным
- •4. 1.2. Отношение к познанию природы
- •4.1.3. Особенности познавательной деятельности
- •4.2. Естественно-научные достижения средневековой арабской культуры
- •4.2.1. Математические достижения
- •4.2.2. Физика и астрономия
- •4.3. Становление науки в средневековой Европе
- •4.4. Физические идеи средневековья
- •4.5. Алхимия как феномен средневековой культуры
- •4.6. Религиозная трактовка происхождения человека
- •4.7. Историческое значение средневекового познания
- •5. Познание природы в эпоху возрождения
- •5.1. Ренессанская мировоззренческая революция
- •5.2. Зарождение научной биологии
- •5.3. Коперниканская революция
- •5.3.1. Гелиоцентрическая система мира
- •5.3.2. Дж. Бруно: мировоззренческие выводы из коперниканизма
- •6. Научная революция XVII в.: возникновение классической механики
- •6.1. И. Кеплер: от поисков гармонии мира к открытию тайны планетных орбит
- •6.2. Формирование непосредственных предпосылок классической механики как первой фундаментальной естественно-научной теории
- •6.2.1. Г. Галилей: разработка понятий и принципов «земной динамики»
- •6.2.2. Картезианская физика
- •6.2.3. Новые идеи в динамике Солнечной системы
- •6.3. Ньютонианская революция
- •6.3.1. Создание теории тяготения
- •6.3.2. Корпускулярная теория света
- •6.3.3. Космология Ньютона
- •6.4. Изучение магнитных и электрических явлений в XVII в.
- •7. Естествознание XVIII -первой половины XIX в.
- •7.1. Общая характеристика развития физики
- •7.1.1. Становление основных отраслей классической физики
- •7.1.2. Принцип дальнодействия
- •7.1.3. Теория теплорода
- •7.1.4. Развитие учения об электричестве и магнетизме в XVIII в.
- •7.1.5. Физика первой половины XIX в.: общая характеристика
- •7.1.6. Волновая теория света
- •7.1.7. Проблема эфира
- •7.1.8. Возникновение полевой концепции
- •7.1.9. Закон сохранения и превращения энергии
- •7.1.10. Концепции пространства и времени
- •7.1.11. Методологические установки классической физики (конец XVII - начало XX вв.)
- •7.2. Развитие астрономической картины мира
- •7.2.1. Создание внегалактической астрономии
- •7.2.2. Формирование идеи развития природы
- •7.2.3. Идея развития в астрономии
- •7.2.4. Космогония и. Канта
- •7.2.5. Методологические установки классической астрономии
- •7.3. Возникновение и развитие научной химии
- •7.3.1. От алхимии к научной химии
- •7. 3.2. Лавуазье: революция в химии
- •7.3.3. Победа атомно-молекулярного учения
- •7.4. Биология
- •7.4.1. Образы, идеи, принципы и понятия биологии XVIII в.
- •7.4.2. От концепций трансформации видов к идее эволюции
- •7.4.3. Ламаркизм
- •7.4.4. Катастрофизм
- •7.4.5. Униформизм. Актуалистический метод
- •7.4.6. Дарвиновская революция
- •7.4.7. Методологические установки классической биологии
- •8. Естествознание второй половины XIX в.: на пути к новой научной революции
- •8.1. Физика
- •8.1.1. Основные черты
- •8.1.2. От возникновения термодинамики к статистической физике: изучение необратимых систем
- •8.1.3. Развитие представлений о пространстве и времени
- •8.1.4. Теория электромагнитного поля
- •8.1.5. Великие открытия
- •8.1.6. Кризис в физике на рубеже веков
- •8.2. Астрономия
- •8.2.1. Триумф ньютоновской астрономии и... Первая брешь в ней
- •8.2.2. Формирование астрофизики: проблема внутреннего строения звезд
- •8.3. Биология
- •8. 3.1. Утверждение теории эволюции ч. Дарвина
- •8.3.2. Становление учения о наследственности (генетики)
- •9.1.2. Создание а. Эйнштейном специальной теории относительности
- •9.2. Создание и развитие общей теории относительности
- •9.2.1. Принципы и понятия эйнштейновской теории гравитации
- •9.2.2. Экспериментальная проверка общей теории относительности
- •9.2 3. Современное состояние теории гравитациии ее роль в физике
- •9.3. Возникновение и развитие квантовой физики
- •9.3.1. Гипотеза квантов
- •9.3.2. Теория атома и. Бора. Принцип соответствия
- •9.3.3. Создание нерелятивистской квантовой механики
- •9.3.4. Проблема интерпретации квантовой механики. Принцип дополнительности
- •9.4. Методологические установки неклассической физики
- •10. Мир элементарных частиц
- •10.1. Фундаментальные физические взаимодействия
- •10.1.1. Гравитация
- •10.1.2. Электромагнетизм
- •10.1.3. Слабое взаимодействие
- •10.1.4. Сильное взаимодействие
- •10.1.5. Проблема единства физики
- •10.2. Классификация элементарных частиц
- •10.2.1. Характеристики субатомных частиц
- •10.2.2. Лептоны
- •L0.2.3. Адроны
- •10.2.4. Частицы - переносчики взаимодействий
- •10.3. Теории элементарных частиц
- •10.3.1. Квантовая электродинамика
- •10.3.2. Теория кварков
- •10.3.3. Теория электрослабого взаимодействия
- •10.3.4. Квантовая хромодинамика
- •10.3.5. На пути к Великому объединению
- •Современная астрономическая картина мира
- •11. Особенности астрономии XX в.
- •11.1. Изменения способа познания в астрономии хх в.
- •11.2. Новая астрономическая революция
- •11.3. Солнечная система
- •11.3.1. Планеты и их спутники
- •11.3.2. Строение планет
- •11.3.3. Происхождение планет
- •11.3.4. Химический состав вещества во Вселенной
- •11.4. Звезды
- •11.4.1. Звезда - газовый шар
- •11.4.2. Эволюция звезд: звезды от их «рождения» до «смерти»
- •11.5. Острова Вселенной: галактики
- •11.5.1. Общее представление о галактиках и их изучении
- •11.5.2. Наша Галактика - звездный дом человечества
- •11.5.3. Межзвездная среда
- •11.5.4. Понятие Метагалактики
- •11.6. Вселенная в целом
- •11.6.1. Особенности современной космологии
- •11.7. Эволюция Вселенной
- •11.7.1. Модель горячей Вселенной
- •11.7.2. Большой Взрыв: инфляционная модель
- •11.7.3. Первые секунды Вселенной
- •11.7.4. От первых минут Вселенной до образования звезд и галактик
- •11.7.5. Образование тяжелых химических элементов
- •11.7.6. Сценарии будущего Вселенной
- •11.8. Жизнь и разум во Вселенной: проблема внеземных цивилизаций
- •11.8.1. Понятие внеземных цивилизаций. Вопрос об их возможной распространенности
- •11.8.2. Типы контактов с внеземными цивилизациями
- •11.8.3. Поиски внеземных цивилизаций
- •11.9. Методологические остановки «неклассической» астрономии XX в.
- •Современная биологическая картина мира
- •12. Особенности биологии XX в.
- •12.1. Век генетики
- •12.1.1. Хромосомная теория наследственности
- •12.1.2. Создание синтетической теории эволюции
- •12.1.3. Революция в молекулярной, биологии
- •12.1.4. Методологические установки современной биологии
- •13. Мир живого
- •13.1. Особенности живых систем
- •13.1.1. Существенные черты живых систем
- •13.1.2. Основные уровни организации живого
- •13.2. Возникновение жизни на Земле
- •13.2.1. Развитие представлений о происхождении жизни
- •13.2.2. Возникновение жизни
- •13.3. Развитие органического мира
- •13.3.1. Основные этапы геологической истории Земли
- •Геологические эры Земли:
- •13.3.2. Начальные этапы эволюции жизни
- •13.3.3. Образование царства растений и царства животных
- •13.3.4. Завоевание суши
- •13.3.5. Основные пути эволюции наземных растений
- •13.3.6. Пути эволюции животных
- •14. Возникновение человека и общества (антропосоциогенез)
- •14.1. Естествознание XVII— первой половины xiXв. О происхождении человека
- •14.2. Предпосылки антропосоциогенеза
- •14.2.1. Абиотические предпосылки
- •14.2.2. Биологические предпосылки
- •14.3. Возникновение труда
- •14.3.1. «Человек умелый»
- •14.3.2. Развитие древнейшей техники человека
- •14.4. Становление социальных отношений
- •14.4.1. Биологические предпосылки социальных отношений
- •14.4.2. Возникновение разделения труда
- •14.5. Генезис сознания и языка.
- •14.5.1. Раскрытие тайны происхождения сознания
- •14.5.2. Генезис языка
- •Часть третья естествознание на пороге XXI в.
- •15. Теория самоорганизации (синергетика)
- •15.1. От моделирования простых систем к моделированию сложных
- •15.2. Характеристики самоорганизующихся систем
- •15.2.1. Открытость
- •15.2.2. Нелинейность
- •15.2.3. Диссипативность
- •15.3. Закономерности самоорганизации
- •16. Глобальный эволюционизм
- •17. На пути к постнеклассической науке XXI в.
- •Заключение Наука и будущее человечества Естествознание как революционизирующая сила цивилизации
- •Наука и квазинаучные формы духовной культуры
- •Контрольные вопросы
- •Литература
- •Терминологический словарь
- •Именной указатель
- •Основные сокращения и обозначения
- •Соотношения между некоторыми физическими величинами
- •Содержание
- •1. Накопление рациональных знаний в системе первобытного сознания 12
- •2. Наука в цивилизациях древности 20
- •3. Создание первой естественнонаучной картины мира в древнегреческой культуре 39
- •4. Естествознание в эпоху средневековья 64
- •5. Познание природы в эпоху возрождения 75
- •6. Научная революция XVII в.: возникновение классической механики 84
- •7. Естествознание XVIII -первой половины XIX в. 93
- •8. Естествознание второй половины XIX в.: на пути к новой научной революции 123
- •9. Научная революция в физике начала XX в.: возникновение релятивистской и квантовой физики 135
- •10. Мир элементарных частиц 150
- •11. Особенности астрономии XX в. 164
- •12. Особенности биологии XX в. 191
- •13. Мир живого 195
- •14. Возникновение человека и общества (антропосоциогенез) 210
- •15. Теория самоорганизации (синергетика) 225
- •16. Глобальный эволюционизм 229
- •17. На пути к постнеклассической науке XXI в. 230
10.1.2. Электромагнетизм
По величине электрические силы намного превосходят гравитационные, поэтому в отличие от слабого гравитационного взаимодействия электрические силы, действующие между телами обычных размеров, можно легко наблюдать. Электромагнетизм известен людям с незапамятных времен (полярные сияния, вспышки молнии и др.).
В течение долгого времени электрические и магнитные процессы изучались независимо друг от друга. Как мы уже знаем, решающий шаг в познании электромагнетизма сделал в середине XIX в. Дж. К. Максвелл, объединивший электричество и магнетизм в единой теории электромагнетизма — первой единой теории поля.
Существование электрона (единицы электрического заряда) было твердо установлено в 90-е гг. XIX в. Но не все материальные частицы являются носителями электрического заряда. Электрически нейтральны, например, фотон и нейтрино. В этом электричество отличается от гравитации. Все материальные частицы создают гравитационное поле, тогда как с электромагнитным полем связаны только заряженные частицы.
Долгое время загадкой была и природа магнетизма. Как и электрические заряды, одноименные магнитные полюсы отталкиваются, а разноименные — притягиваются. В отличие от электрических зарядов магнитные полюсы встречаются не по отдельности, а только парами — северный полюс и южный. Хорошо известно, что в обычном магнитном стержне один конец действует как северный полюс, а другой — как южный. Еще с древнейших времен известны попытки получить посредством разделения магнита лишь один изолированный магнитный полюс — монополь. Но все они заканчивались неудачей: на месте разреза возникали два новых магнита, каждый из которых имел и северный, и южный полюсы. Может быть, существование изолированных магнитных полюсов в природе исключено? Определенного ответа на этот вопрос пока не существует. Некоторые современные теории допускают возможность существования монополя.
Электрическая и магнитная силы (как и гравитация) являются дальнодействующими, их действие ощутимо на больших расстояниях от источника. Электромагнитное взаимодействие проявляется на всех уровнях материи — в мегамире, макромире и микромире. Как и гравитация, оно подчиняется закону обратных квадратов.
Электромагнитное поле Земли простирается далеко в космическое пространство, мощное поле Солнца заполняет всю Солнечную систему; существуют и галактические электромагнитные поля. Электромагнитное взаимодействие определяет также структуру атомов и отвечает за подавляющее большинство физических и химических явлений и процессов (за исключением ядерных). К нему сводятся все обычные силы: силы упругости, трения, поверхностного натяжения, им определяются агрегатные состояния вещества, оптические явления и др.
10.1.3. Слабое взаимодействие
К выявлению существования слабого взаимодействия физика продвигалась медленно. Слабое взаимодействие ответственно за распады частиц; и поэтому с его проявлением столкнулись с открытием радиоактивности и исследованием бета-распада (см. 8.1.5).
У бета-распада обнаружилась в высшей степени странная особенность. Исследования приводили к выводу, что в этом распаде как будто нарушается один из фундаментальных законов физики — закон сохранения энергии. Казалось, что часть энергии куда-то исчезала. Чтобы «спасти» закон сохранения энергии, В. Паули предположил, что при бета-распаде вместе с электроном вылетает, унося с собой недостающую энергию, еще одна частица. Она — нейтральная и обладает необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку «нейтрино».
Но предсказание нейтрино — это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, но здесь оставалось много загадочного. Дело в том, что электроны и нейтрино испускались нестабильными ядрами. Но было неопровержимо доказано, что внутри ядер нет таких частиц. Как же они возникали? Было высказано предположение, что электроны и нейтрино не существуют в ядре в «готовом виде», а каким-то образом образуются из энергии радиоактивного ядра. Дальнейшие исследования показали, что входящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино, т.е. вместо одной частицы появляется три новые. Анализ приводил к выводу, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой. Исследования показали, что этой силе соответствует некоторое слабое взаимодействие.
Слабое взаимодействие по величине значительно меньше всех взаимодействий, кроме гравитационного, и в системах, где оно присутствует, его эффекты оказываются в тени электромагнитного и сильного взаимодействий. Кроме того, слабое взаимодействие распространяется на очень незначительных расстояниях. Радиус слабого взаимодействия очень мал. Слабое взаимодействие прекращается на расстоянии, большем 10-16 см от источника, и потому оно не может влиять на макроскопические объекты, а ограничивается микромиром, субатомными частицами. Когда началось лавинообразное открытие множества нестабильных субъядерных частиц, то обнаружилось, что большинство из них участвуют в слабом взаимодействии.
Теория слабого взаимодействия была создана в конце 60-х гг. С момента построения Максвеллом теории электромагнитного поля создание этой теории явилось самым крупным шагом на пути к единству физики.