- •В.М.Найдыш Концепции современного естествознания
- •Предисловие
- •Введение Естествознание как отрасль научного познания
- •B.I. Понятие культуры
- •В.2. Материальная и духовная культура
- •В.З. Наука как компонент духовной культуры
- •В.4. Проблема культур в науке: от конфронтации к сотрудничеству
- •В.5. Структура естественнонаучного познания
- •Часть первая Основные исторические периоды развития естествознания
- •1. Накопление рациональных знаний в системе первобытного сознания
- •1.1. Повседневное, стихийно-эмпирическое знание
- •1.2. Зарождение счета
- •1.3. Мифология
- •2. Наука в цивилизациях древности
- •2.1. Становление цивилизации
- •2.1.1. Неолитическая революция
- •2.1.2. Рационализация форм деятельности и общения
- •2.1.3. Разделение труда и развитие духовной культуры
- •2.1.4. Возникновение письменности
- •2.1.5. «Культурное пространство» древневосточных цивилизаций
- •2.2. Развитие рациональных знаний в эпоху классообразования цивилизаций Древнего Востока
- •2.2.1. От Мифа к Логосу (Науке)
- •2.2.2. Географические знания.
- •2.2.3. Биологические, медицинские и химические знания
- •2.2.4. Астрономические знания
- •2.2.5. Математические знания
- •3. Создание первой естественнонаучной картины мира в древнегреческой культуре
- •3.1. Культурно-исторические особенности древнегреческой цивилизации
- •3.2. От Хаоса к Космосу
- •3.3. Категория субстанции
- •3.4. Мир как число
- •3.4.1. Пифагорейский союз
- •3.4.2. Математические и естественно-научные достижения пифагореизма
- •3.5. Формирование первых естественнонаучных программ
- •3.5.1. Великое открытие элеатов
- •3.5.2. Атомистическая программа
- •3.5.3. Математическая программа
- •3.6. Физика и космология Аристотеля
- •3.6.1. Учение Аристотеля о материи и форме
- •3.6.2. Космология Аристотеля
- •3.6.3. Основные представления аристотелевской механики
- •3.7. Естествознание эллинистически-римского периода
- •3.7.1. Культура эллинизма
- •3.7.2. Александрийская математическая школа
- •3.7.3. Развитие теоретической и прикладной механики
- •3.8. Развитие древнегреческой астрономии
- •3. 8.1. Становление математической астрономии
- •3.8.2. Геоцентрическая система Птолемея
- •3.9. Античные воззрения на органический мир
- •3. 9.1. Античные толкования проблемы происхождения и развития живого
- •3.9. 2. Биологические воззрения Аристотеля
- •3. 9.3. Накопление рациональных биологических знаний в античности
- •3.9.4. Античные представления о происхождении человека
- •3.10. Упадок античной науки
- •4. Естествознание в эпоху средневековья
- •4.1. Особенности средневековой духовной культуры
- •4.1.1. Доминирование ценностного над познавательным
- •4. 1.2. Отношение к познанию природы
- •4.1.3. Особенности познавательной деятельности
- •4.2. Естественно-научные достижения средневековой арабской культуры
- •4.2.1. Математические достижения
- •4.2.2. Физика и астрономия
- •4.3. Становление науки в средневековой Европе
- •4.4. Физические идеи средневековья
- •4.5. Алхимия как феномен средневековой культуры
- •4.6. Религиозная трактовка происхождения человека
- •4.7. Историческое значение средневекового познания
- •5. Познание природы в эпоху возрождения
- •5.1. Ренессанская мировоззренческая революция
- •5.2. Зарождение научной биологии
- •5.3. Коперниканская революция
- •5.3.1. Гелиоцентрическая система мира
- •5.3.2. Дж. Бруно: мировоззренческие выводы из коперниканизма
- •6. Научная революция XVII в.: возникновение классической механики
- •6.1. И. Кеплер: от поисков гармонии мира к открытию тайны планетных орбит
- •6.2. Формирование непосредственных предпосылок классической механики как первой фундаментальной естественно-научной теории
- •6.2.1. Г. Галилей: разработка понятий и принципов «земной динамики»
- •6.2.2. Картезианская физика
- •6.2.3. Новые идеи в динамике Солнечной системы
- •6.3. Ньютонианская революция
- •6.3.1. Создание теории тяготения
- •6.3.2. Корпускулярная теория света
- •6.3.3. Космология Ньютона
- •6.4. Изучение магнитных и электрических явлений в XVII в.
- •7. Естествознание XVIII -первой половины XIX в.
- •7.1. Общая характеристика развития физики
- •7.1.1. Становление основных отраслей классической физики
- •7.1.2. Принцип дальнодействия
- •7.1.3. Теория теплорода
- •7.1.4. Развитие учения об электричестве и магнетизме в XVIII в.
- •7.1.5. Физика первой половины XIX в.: общая характеристика
- •7.1.6. Волновая теория света
- •7.1.7. Проблема эфира
- •7.1.8. Возникновение полевой концепции
- •7.1.9. Закон сохранения и превращения энергии
- •7.1.10. Концепции пространства и времени
- •7.1.11. Методологические установки классической физики (конец XVII - начало XX вв.)
- •7.2. Развитие астрономической картины мира
- •7.2.1. Создание внегалактической астрономии
- •7.2.2. Формирование идеи развития природы
- •7.2.3. Идея развития в астрономии
- •7.2.4. Космогония и. Канта
- •7.2.5. Методологические установки классической астрономии
- •7.3. Возникновение и развитие научной химии
- •7.3.1. От алхимии к научной химии
- •7. 3.2. Лавуазье: революция в химии
- •7.3.3. Победа атомно-молекулярного учения
- •7.4. Биология
- •7.4.1. Образы, идеи, принципы и понятия биологии XVIII в.
- •7.4.2. От концепций трансформации видов к идее эволюции
- •7.4.3. Ламаркизм
- •7.4.4. Катастрофизм
- •7.4.5. Униформизм. Актуалистический метод
- •7.4.6. Дарвиновская революция
- •7.4.7. Методологические установки классической биологии
- •8. Естествознание второй половины XIX в.: на пути к новой научной революции
- •8.1. Физика
- •8.1.1. Основные черты
- •8.1.2. От возникновения термодинамики к статистической физике: изучение необратимых систем
- •8.1.3. Развитие представлений о пространстве и времени
- •8.1.4. Теория электромагнитного поля
- •8.1.5. Великие открытия
- •8.1.6. Кризис в физике на рубеже веков
- •8.2. Астрономия
- •8.2.1. Триумф ньютоновской астрономии и... Первая брешь в ней
- •8.2.2. Формирование астрофизики: проблема внутреннего строения звезд
- •8.3. Биология
- •8. 3.1. Утверждение теории эволюции ч. Дарвина
- •8.3.2. Становление учения о наследственности (генетики)
- •9.1.2. Создание а. Эйнштейном специальной теории относительности
- •9.2. Создание и развитие общей теории относительности
- •9.2.1. Принципы и понятия эйнштейновской теории гравитации
- •9.2.2. Экспериментальная проверка общей теории относительности
- •9.2 3. Современное состояние теории гравитациии ее роль в физике
- •9.3. Возникновение и развитие квантовой физики
- •9.3.1. Гипотеза квантов
- •9.3.2. Теория атома и. Бора. Принцип соответствия
- •9.3.3. Создание нерелятивистской квантовой механики
- •9.3.4. Проблема интерпретации квантовой механики. Принцип дополнительности
- •9.4. Методологические установки неклассической физики
- •10. Мир элементарных частиц
- •10.1. Фундаментальные физические взаимодействия
- •10.1.1. Гравитация
- •10.1.2. Электромагнетизм
- •10.1.3. Слабое взаимодействие
- •10.1.4. Сильное взаимодействие
- •10.1.5. Проблема единства физики
- •10.2. Классификация элементарных частиц
- •10.2.1. Характеристики субатомных частиц
- •10.2.2. Лептоны
- •L0.2.3. Адроны
- •10.2.4. Частицы - переносчики взаимодействий
- •10.3. Теории элементарных частиц
- •10.3.1. Квантовая электродинамика
- •10.3.2. Теория кварков
- •10.3.3. Теория электрослабого взаимодействия
- •10.3.4. Квантовая хромодинамика
- •10.3.5. На пути к Великому объединению
- •Современная астрономическая картина мира
- •11. Особенности астрономии XX в.
- •11.1. Изменения способа познания в астрономии хх в.
- •11.2. Новая астрономическая революция
- •11.3. Солнечная система
- •11.3.1. Планеты и их спутники
- •11.3.2. Строение планет
- •11.3.3. Происхождение планет
- •11.3.4. Химический состав вещества во Вселенной
- •11.4. Звезды
- •11.4.1. Звезда - газовый шар
- •11.4.2. Эволюция звезд: звезды от их «рождения» до «смерти»
- •11.5. Острова Вселенной: галактики
- •11.5.1. Общее представление о галактиках и их изучении
- •11.5.2. Наша Галактика - звездный дом человечества
- •11.5.3. Межзвездная среда
- •11.5.4. Понятие Метагалактики
- •11.6. Вселенная в целом
- •11.6.1. Особенности современной космологии
- •11.7. Эволюция Вселенной
- •11.7.1. Модель горячей Вселенной
- •11.7.2. Большой Взрыв: инфляционная модель
- •11.7.3. Первые секунды Вселенной
- •11.7.4. От первых минут Вселенной до образования звезд и галактик
- •11.7.5. Образование тяжелых химических элементов
- •11.7.6. Сценарии будущего Вселенной
- •11.8. Жизнь и разум во Вселенной: проблема внеземных цивилизаций
- •11.8.1. Понятие внеземных цивилизаций. Вопрос об их возможной распространенности
- •11.8.2. Типы контактов с внеземными цивилизациями
- •11.8.3. Поиски внеземных цивилизаций
- •11.9. Методологические остановки «неклассической» астрономии XX в.
- •Современная биологическая картина мира
- •12. Особенности биологии XX в.
- •12.1. Век генетики
- •12.1.1. Хромосомная теория наследственности
- •12.1.2. Создание синтетической теории эволюции
- •12.1.3. Революция в молекулярной, биологии
- •12.1.4. Методологические установки современной биологии
- •13. Мир живого
- •13.1. Особенности живых систем
- •13.1.1. Существенные черты живых систем
- •13.1.2. Основные уровни организации живого
- •13.2. Возникновение жизни на Земле
- •13.2.1. Развитие представлений о происхождении жизни
- •13.2.2. Возникновение жизни
- •13.3. Развитие органического мира
- •13.3.1. Основные этапы геологической истории Земли
- •Геологические эры Земли:
- •13.3.2. Начальные этапы эволюции жизни
- •13.3.3. Образование царства растений и царства животных
- •13.3.4. Завоевание суши
- •13.3.5. Основные пути эволюции наземных растений
- •13.3.6. Пути эволюции животных
- •14. Возникновение человека и общества (антропосоциогенез)
- •14.1. Естествознание XVII— первой половины xiXв. О происхождении человека
- •14.2. Предпосылки антропосоциогенеза
- •14.2.1. Абиотические предпосылки
- •14.2.2. Биологические предпосылки
- •14.3. Возникновение труда
- •14.3.1. «Человек умелый»
- •14.3.2. Развитие древнейшей техники человека
- •14.4. Становление социальных отношений
- •14.4.1. Биологические предпосылки социальных отношений
- •14.4.2. Возникновение разделения труда
- •14.5. Генезис сознания и языка.
- •14.5.1. Раскрытие тайны происхождения сознания
- •14.5.2. Генезис языка
- •Часть третья естествознание на пороге XXI в.
- •15. Теория самоорганизации (синергетика)
- •15.1. От моделирования простых систем к моделированию сложных
- •15.2. Характеристики самоорганизующихся систем
- •15.2.1. Открытость
- •15.2.2. Нелинейность
- •15.2.3. Диссипативность
- •15.3. Закономерности самоорганизации
- •16. Глобальный эволюционизм
- •17. На пути к постнеклассической науке XXI в.
- •Заключение Наука и будущее человечества Естествознание как революционизирующая сила цивилизации
- •Наука и квазинаучные формы духовной культуры
- •Контрольные вопросы
- •Литература
- •Терминологический словарь
- •Именной указатель
- •Основные сокращения и обозначения
- •Соотношения между некоторыми физическими величинами
- •Содержание
- •1. Накопление рациональных знаний в системе первобытного сознания 12
- •2. Наука в цивилизациях древности 20
- •3. Создание первой естественнонаучной картины мира в древнегреческой культуре 39
- •4. Естествознание в эпоху средневековья 64
- •5. Познание природы в эпоху возрождения 75
- •6. Научная революция XVII в.: возникновение классической механики 84
- •7. Естествознание XVIII -первой половины XIX в. 93
- •8. Естествознание второй половины XIX в.: на пути к новой научной революции 123
- •9. Научная революция в физике начала XX в.: возникновение релятивистской и квантовой физики 135
- •10. Мир элементарных частиц 150
- •11. Особенности астрономии XX в. 164
- •12. Особенности биологии XX в. 191
- •13. Мир живого 195
- •14. Возникновение человека и общества (антропосоциогенез) 210
- •15. Теория самоорганизации (синергетика) 225
- •16. Глобальный эволюционизм 229
- •17. На пути к постнеклассической науке XXI в. 230
9.3.2. Теория атома и. Бора. Принцип соответствия
В свете тех выдающихся открытий конца XIX в., которые революционизировали физику, одной из ключевых стала проблема строения атомов. Еще в 1889 г. в своей Фарадеевской лекции Д.И. Менделеев отмечал, что в результате выявления специфической периодичности химических свойств элементов, расположенных по возрастающим атомным весам, центральной проблемой физики становится проблема строения атома *.
* Менделеев Д.И. Полн. собр. соч. М., 1937. Т. 2. С. 347.
В 1909—1910 гг. Э. Резерфордом были проведены экспериментальные исследования рассеяния α-частиц тонким слоем вещества. Как показали эти исследования, большинство α-частиц, пронизывающих тонкий слой вещества, рассеиваются силовыми центрами, которые действуют на них с силой, обратно пропорциональной квадрату расстояния. Некоторые сравнительно немногие частицы отклонялись на угол 90° и более; по-видимому, они встретились с очень сильными электрическими полями. Результаты этого исследования позволили Резерфорду в 1911 г. сформулировать планетарную модель атома. По модели Резерфорда, атом состоит из положительного ядра гораздо меньших размеров, нежели атом, — порядка 10-13 см. Вокруг ядра вращаются электроны. Общий заряд атома равен нулю, поэтому заряд ядра по абсолютной величине равен nе, где n — число электронов в атоме, е — заряд электрона. Резерфорд полагал также, что число электронов в атоме должно быть равно порядковому номеру элемента в периодической системе Менделеева. Но модель Резерфорда не объясняла многих выявленных к тому времени закономерностей излучения атомов, вид атомных спектров и др.
Более совершенную квантовую модель атома предложил в 1913 г. молодой датский физик Н. Бор, работавший в лаборатории Резерфорда. Бор понял, что для построения теории, которая объясняла бы и результаты опытов по рассеянию α -частиц, и устойчивость атома, и сериальные закономерности, и ряд других экспериментальных данных, нужно отказаться от ряда принципов классической физики. Бор взял за основу модель атома Резерфорда и дополнил ее новыми гипотезами, которые не следуют или даже противоречат классическим представлениям. Эти гипотезы известны как постулаты Бора. Они сводятся к следующему.
1. Каждый электрон в атоме может совершать устойчивое орбитальное движение по определенной орбите, с определенным значением энергии, не испуская и не поглощая электромагнитного излучения. В этих состояниях атомные системы обладают энергиями, образующими дискретный ряд: Е1, Е2, ..., Еn. Состояния эти характеризуется своей устойчивостью. Всякое изменение энергии в результате поглощения или испускания электромагнитного излучения может происходить только скачком из одного состояния в другое.
2. Электрон способен переходить с одной стационарной орбиты на другую. Только в этом случае он испускает или поглощает определенную порцию энергии монохроматического излучения определенной частоты. Эта частота зависит от уровня изменения энергии атома при таком переходе. Если при переходе электрона с орбиты на орбиту энергия атома изменяется от Еm до Еn, то испускаемая или поглощаемая частота определяется условием
Эти постулаты Бор использовал для расчета простейшего атома (водорода), рассматривая первоначально наиболее простую его модель: неподвижное ядро, вокруг которого по круговой орбите вращается электрон. Объяснение спектра водорода было большим успехом теории Бора.
Квантовые постулаты Бора были лишь первым шагом в создании теории атома, поэтому пришлось воспользоваться следующим приемом: сначала задача решалась при помощи классической механики (заведомо неприменимой полностью к внутриатомным движениям), а затем из всего непрерывного множества состояний движения, к которым приводит классическая механика, на основе квантовых постулатов отбирались квантовые состояния. Несмотря на все несовершенство этого метода, он привел к большим успехам — позволил объяснить сложные закономерности в атомных и молекулярных спектрах, осмыслить природу химических взаимодействий и др. Такой подход, по сути, является частным случаем общего принципа, играющего важную роль в современной теоретической физике — принципа соответствия, который гласит, что всякая неклассическая теория в соответствующем предельном случае переходит в классическую.
Важным достижением Бора и других исследователей было развитие представления о строении многоэлектронных атомов. Предпринятые шаги в развитии теории строения более сложных (чем водород) атомов и объяснении структуры их спектров принесли некоторые успехи, однако здесь исследователи столкнулись с большими трудностями. Введение четырех квантовых чисел, характеризующих состояния электрона в атоме, установление принципа Паули (согласно которому две тождественный частицы с полуцелым спином не могут одновременно находиться в одном состоянии) и объяснение периодической системы Менделеева — большие успехи теории атома Бора. Однако они не означали, что эту теорию можно считать завершенной. Во-первых, постулаты Бора и многие принципы его теории имели характер непонятных, ни откуда не следуемых утверждений, которые еще должны получить свое обоснование. Во-вторых, в некоторых даже довольно простых случаях применение данной теории встречало непреодолимые трудности; так, например, попытки теоретически рассчитать даже такой, казалось бы, простой атом, как атом гелия, не привели к успеху. Физики ясно понимали неудовлетворительность боровской теории атома.
Таким образом, в первой четверти XX в. перед физикой все еще стояла задача поиска новых путей развития теории атомных явлений. Ее решение потребовало отказа от ряда давно установленных понятий и выработки совершенно новых теоретических представлений и принципов.