- •В.М.Найдыш Концепции современного естествознания
- •Предисловие
- •Введение Естествознание как отрасль научного познания
- •B.I. Понятие культуры
- •В.2. Материальная и духовная культура
- •В.З. Наука как компонент духовной культуры
- •В.4. Проблема культур в науке: от конфронтации к сотрудничеству
- •В.5. Структура естественнонаучного познания
- •Часть первая Основные исторические периоды развития естествознания
- •1. Накопление рациональных знаний в системе первобытного сознания
- •1.1. Повседневное, стихийно-эмпирическое знание
- •1.2. Зарождение счета
- •1.3. Мифология
- •2. Наука в цивилизациях древности
- •2.1. Становление цивилизации
- •2.1.1. Неолитическая революция
- •2.1.2. Рационализация форм деятельности и общения
- •2.1.3. Разделение труда и развитие духовной культуры
- •2.1.4. Возникновение письменности
- •2.1.5. «Культурное пространство» древневосточных цивилизаций
- •2.2. Развитие рациональных знаний в эпоху классообразования цивилизаций Древнего Востока
- •2.2.1. От Мифа к Логосу (Науке)
- •2.2.2. Географические знания.
- •2.2.3. Биологические, медицинские и химические знания
- •2.2.4. Астрономические знания
- •2.2.5. Математические знания
- •3. Создание первой естественнонаучной картины мира в древнегреческой культуре
- •3.1. Культурно-исторические особенности древнегреческой цивилизации
- •3.2. От Хаоса к Космосу
- •3.3. Категория субстанции
- •3.4. Мир как число
- •3.4.1. Пифагорейский союз
- •3.4.2. Математические и естественно-научные достижения пифагореизма
- •3.5. Формирование первых естественнонаучных программ
- •3.5.1. Великое открытие элеатов
- •3.5.2. Атомистическая программа
- •3.5.3. Математическая программа
- •3.6. Физика и космология Аристотеля
- •3.6.1. Учение Аристотеля о материи и форме
- •3.6.2. Космология Аристотеля
- •3.6.3. Основные представления аристотелевской механики
- •3.7. Естествознание эллинистически-римского периода
- •3.7.1. Культура эллинизма
- •3.7.2. Александрийская математическая школа
- •3.7.3. Развитие теоретической и прикладной механики
- •3.8. Развитие древнегреческой астрономии
- •3. 8.1. Становление математической астрономии
- •3.8.2. Геоцентрическая система Птолемея
- •3.9. Античные воззрения на органический мир
- •3. 9.1. Античные толкования проблемы происхождения и развития живого
- •3.9. 2. Биологические воззрения Аристотеля
- •3. 9.3. Накопление рациональных биологических знаний в античности
- •3.9.4. Античные представления о происхождении человека
- •3.10. Упадок античной науки
- •4. Естествознание в эпоху средневековья
- •4.1. Особенности средневековой духовной культуры
- •4.1.1. Доминирование ценностного над познавательным
- •4. 1.2. Отношение к познанию природы
- •4.1.3. Особенности познавательной деятельности
- •4.2. Естественно-научные достижения средневековой арабской культуры
- •4.2.1. Математические достижения
- •4.2.2. Физика и астрономия
- •4.3. Становление науки в средневековой Европе
- •4.4. Физические идеи средневековья
- •4.5. Алхимия как феномен средневековой культуры
- •4.6. Религиозная трактовка происхождения человека
- •4.7. Историческое значение средневекового познания
- •5. Познание природы в эпоху возрождения
- •5.1. Ренессанская мировоззренческая революция
- •5.2. Зарождение научной биологии
- •5.3. Коперниканская революция
- •5.3.1. Гелиоцентрическая система мира
- •5.3.2. Дж. Бруно: мировоззренческие выводы из коперниканизма
- •6. Научная революция XVII в.: возникновение классической механики
- •6.1. И. Кеплер: от поисков гармонии мира к открытию тайны планетных орбит
- •6.2. Формирование непосредственных предпосылок классической механики как первой фундаментальной естественно-научной теории
- •6.2.1. Г. Галилей: разработка понятий и принципов «земной динамики»
- •6.2.2. Картезианская физика
- •6.2.3. Новые идеи в динамике Солнечной системы
- •6.3. Ньютонианская революция
- •6.3.1. Создание теории тяготения
- •6.3.2. Корпускулярная теория света
- •6.3.3. Космология Ньютона
- •6.4. Изучение магнитных и электрических явлений в XVII в.
- •7. Естествознание XVIII -первой половины XIX в.
- •7.1. Общая характеристика развития физики
- •7.1.1. Становление основных отраслей классической физики
- •7.1.2. Принцип дальнодействия
- •7.1.3. Теория теплорода
- •7.1.4. Развитие учения об электричестве и магнетизме в XVIII в.
- •7.1.5. Физика первой половины XIX в.: общая характеристика
- •7.1.6. Волновая теория света
- •7.1.7. Проблема эфира
- •7.1.8. Возникновение полевой концепции
- •7.1.9. Закон сохранения и превращения энергии
- •7.1.10. Концепции пространства и времени
- •7.1.11. Методологические установки классической физики (конец XVII - начало XX вв.)
- •7.2. Развитие астрономической картины мира
- •7.2.1. Создание внегалактической астрономии
- •7.2.2. Формирование идеи развития природы
- •7.2.3. Идея развития в астрономии
- •7.2.4. Космогония и. Канта
- •7.2.5. Методологические установки классической астрономии
- •7.3. Возникновение и развитие научной химии
- •7.3.1. От алхимии к научной химии
- •7. 3.2. Лавуазье: революция в химии
- •7.3.3. Победа атомно-молекулярного учения
- •7.4. Биология
- •7.4.1. Образы, идеи, принципы и понятия биологии XVIII в.
- •7.4.2. От концепций трансформации видов к идее эволюции
- •7.4.3. Ламаркизм
- •7.4.4. Катастрофизм
- •7.4.5. Униформизм. Актуалистический метод
- •7.4.6. Дарвиновская революция
- •7.4.7. Методологические установки классической биологии
- •8. Естествознание второй половины XIX в.: на пути к новой научной революции
- •8.1. Физика
- •8.1.1. Основные черты
- •8.1.2. От возникновения термодинамики к статистической физике: изучение необратимых систем
- •8.1.3. Развитие представлений о пространстве и времени
- •8.1.4. Теория электромагнитного поля
- •8.1.5. Великие открытия
- •8.1.6. Кризис в физике на рубеже веков
- •8.2. Астрономия
- •8.2.1. Триумф ньютоновской астрономии и... Первая брешь в ней
- •8.2.2. Формирование астрофизики: проблема внутреннего строения звезд
- •8.3. Биология
- •8. 3.1. Утверждение теории эволюции ч. Дарвина
- •8.3.2. Становление учения о наследственности (генетики)
- •9.1.2. Создание а. Эйнштейном специальной теории относительности
- •9.2. Создание и развитие общей теории относительности
- •9.2.1. Принципы и понятия эйнштейновской теории гравитации
- •9.2.2. Экспериментальная проверка общей теории относительности
- •9.2 3. Современное состояние теории гравитациии ее роль в физике
- •9.3. Возникновение и развитие квантовой физики
- •9.3.1. Гипотеза квантов
- •9.3.2. Теория атома и. Бора. Принцип соответствия
- •9.3.3. Создание нерелятивистской квантовой механики
- •9.3.4. Проблема интерпретации квантовой механики. Принцип дополнительности
- •9.4. Методологические установки неклассической физики
- •10. Мир элементарных частиц
- •10.1. Фундаментальные физические взаимодействия
- •10.1.1. Гравитация
- •10.1.2. Электромагнетизм
- •10.1.3. Слабое взаимодействие
- •10.1.4. Сильное взаимодействие
- •10.1.5. Проблема единства физики
- •10.2. Классификация элементарных частиц
- •10.2.1. Характеристики субатомных частиц
- •10.2.2. Лептоны
- •L0.2.3. Адроны
- •10.2.4. Частицы - переносчики взаимодействий
- •10.3. Теории элементарных частиц
- •10.3.1. Квантовая электродинамика
- •10.3.2. Теория кварков
- •10.3.3. Теория электрослабого взаимодействия
- •10.3.4. Квантовая хромодинамика
- •10.3.5. На пути к Великому объединению
- •Современная астрономическая картина мира
- •11. Особенности астрономии XX в.
- •11.1. Изменения способа познания в астрономии хх в.
- •11.2. Новая астрономическая революция
- •11.3. Солнечная система
- •11.3.1. Планеты и их спутники
- •11.3.2. Строение планет
- •11.3.3. Происхождение планет
- •11.3.4. Химический состав вещества во Вселенной
- •11.4. Звезды
- •11.4.1. Звезда - газовый шар
- •11.4.2. Эволюция звезд: звезды от их «рождения» до «смерти»
- •11.5. Острова Вселенной: галактики
- •11.5.1. Общее представление о галактиках и их изучении
- •11.5.2. Наша Галактика - звездный дом человечества
- •11.5.3. Межзвездная среда
- •11.5.4. Понятие Метагалактики
- •11.6. Вселенная в целом
- •11.6.1. Особенности современной космологии
- •11.7. Эволюция Вселенной
- •11.7.1. Модель горячей Вселенной
- •11.7.2. Большой Взрыв: инфляционная модель
- •11.7.3. Первые секунды Вселенной
- •11.7.4. От первых минут Вселенной до образования звезд и галактик
- •11.7.5. Образование тяжелых химических элементов
- •11.7.6. Сценарии будущего Вселенной
- •11.8. Жизнь и разум во Вселенной: проблема внеземных цивилизаций
- •11.8.1. Понятие внеземных цивилизаций. Вопрос об их возможной распространенности
- •11.8.2. Типы контактов с внеземными цивилизациями
- •11.8.3. Поиски внеземных цивилизаций
- •11.9. Методологические остановки «неклассической» астрономии XX в.
- •Современная биологическая картина мира
- •12. Особенности биологии XX в.
- •12.1. Век генетики
- •12.1.1. Хромосомная теория наследственности
- •12.1.2. Создание синтетической теории эволюции
- •12.1.3. Революция в молекулярной, биологии
- •12.1.4. Методологические установки современной биологии
- •13. Мир живого
- •13.1. Особенности живых систем
- •13.1.1. Существенные черты живых систем
- •13.1.2. Основные уровни организации живого
- •13.2. Возникновение жизни на Земле
- •13.2.1. Развитие представлений о происхождении жизни
- •13.2.2. Возникновение жизни
- •13.3. Развитие органического мира
- •13.3.1. Основные этапы геологической истории Земли
- •Геологические эры Земли:
- •13.3.2. Начальные этапы эволюции жизни
- •13.3.3. Образование царства растений и царства животных
- •13.3.4. Завоевание суши
- •13.3.5. Основные пути эволюции наземных растений
- •13.3.6. Пути эволюции животных
- •14. Возникновение человека и общества (антропосоциогенез)
- •14.1. Естествознание XVII— первой половины xiXв. О происхождении человека
- •14.2. Предпосылки антропосоциогенеза
- •14.2.1. Абиотические предпосылки
- •14.2.2. Биологические предпосылки
- •14.3. Возникновение труда
- •14.3.1. «Человек умелый»
- •14.3.2. Развитие древнейшей техники человека
- •14.4. Становление социальных отношений
- •14.4.1. Биологические предпосылки социальных отношений
- •14.4.2. Возникновение разделения труда
- •14.5. Генезис сознания и языка.
- •14.5.1. Раскрытие тайны происхождения сознания
- •14.5.2. Генезис языка
- •Часть третья естествознание на пороге XXI в.
- •15. Теория самоорганизации (синергетика)
- •15.1. От моделирования простых систем к моделированию сложных
- •15.2. Характеристики самоорганизующихся систем
- •15.2.1. Открытость
- •15.2.2. Нелинейность
- •15.2.3. Диссипативность
- •15.3. Закономерности самоорганизации
- •16. Глобальный эволюционизм
- •17. На пути к постнеклассической науке XXI в.
- •Заключение Наука и будущее человечества Естествознание как революционизирующая сила цивилизации
- •Наука и квазинаучные формы духовной культуры
- •Контрольные вопросы
- •Литература
- •Терминологический словарь
- •Именной указатель
- •Основные сокращения и обозначения
- •Соотношения между некоторыми физическими величинами
- •Содержание
- •1. Накопление рациональных знаний в системе первобытного сознания 12
- •2. Наука в цивилизациях древности 20
- •3. Создание первой естественнонаучной картины мира в древнегреческой культуре 39
- •4. Естествознание в эпоху средневековья 64
- •5. Познание природы в эпоху возрождения 75
- •6. Научная революция XVII в.: возникновение классической механики 84
- •7. Естествознание XVIII -первой половины XIX в. 93
- •8. Естествознание второй половины XIX в.: на пути к новой научной революции 123
- •9. Научная революция в физике начала XX в.: возникновение релятивистской и квантовой физики 135
- •10. Мир элементарных частиц 150
- •11. Особенности астрономии XX в. 164
- •12. Особенности биологии XX в. 191
- •13. Мир живого 195
- •14. Возникновение человека и общества (антропосоциогенез) 210
- •15. Теория самоорганизации (синергетика) 225
- •16. Глобальный эволюционизм 229
- •17. На пути к постнеклассической науке XXI в. 230
11.7.4. От первых минут Вселенной до образования звезд и галактик
Методом математического моделирования астрофизикам удалось воспроизвести детали ядерных процессов, происходивших в первые минуты существования Вселенной *.
* См.: Вайнберг С. Первые три минуты. Современный взгляд на происхождение Вселенной. М.,1981.
Согласно полученным результатам, в конце первой секунды температура достигала 1010 К. При такой высокой температуре сложные ядра существовать не могут. Тогда все пространство было заполнено хаотически движущимися протонами и нейтронами вперемешку с электронами, нейтрино и фотонами. Ранняя Вселенная расширялась чрезвычайно быстро и по прошествии еще минуты температура упала на два порядка, а спустя еще несколько минут стала ниже уровня, при котором возможны ядерные реакции. В этот относительно короткий (буквально несколько минут) промежуток времени протоны и нейтроны могли объединяться, образуя сложные ядра.
В тот период основной ядерной реакцией было слияние протонов и нейтронов с образованием ядер гелия, каждое из которых состоит из двух протонов и двух нейтронов. Поскольку протоны немного легче нейтронов, они присутствовали в несколько большем количестве и по завершении синтеза гелия часть протонов оставалась свободной. Образовавшаяся плазма состояла примерно на 10% из ядер гелия и на 90 % из ядер водорода (протонов). Эти цифры соответствуют наблюдаемому содержанию названных элементов в современной Вселенной.
Великое счастье для нас, что в первичном веществе был избыток протонов над нейтронами. Благодаря ему остались во Вселенной несвязанные протоны, и впоследствии образовался водород, без которого не светило бы Солнце, не было бы воды, не могла возникнуть жизнь. Не было бы жизни, не было бы и человечества. Так наше существование и сама возможность познания Вселенной прямо определяется отдаленным прошлым, начальными моментами Вселенной.
После стадии термоядерных реакций температура вещества была еще настолько высока, что оно находилось в состоянии плазмы еще сотни тысяч лет, вплоть до периода рекомбинации (Т ≈ 4000 К), когда ядра присоединяли электроны и превращались в нейтральные атомы. Первыми образовались атомы гелия и водорода. Как полагают, из этих первичных водорода и гелия, находившихся в газообразном состоянии, сформировались первые звезды и галактики.
Когда размеры Вселенной были примерно в 100 раз меньше, чем в настоящую эпоху, из зарождавшихся неоднородностей газообразного водорода и гелия возникли газовые сгустки — протогалактические сгущения. Постепенно они фрагментировались, в них образовывались меньшие сгустки вещества. Из таких сгустков разной массы, имевших определенный вращательный момент, постепенно сформировались звезды и галактики. Расширение Вселенной определило разлет галактик, которые сами практически не расширяются.
11.7.5. Образование тяжелых химических элементов
Таким образом, согласно современным космологическим представлениям, атомы существовали не всегда: они являются реликтами физических процессов, происходивших в глубинах Вселенной задолго до образовании Земли. Атомы — это «ископаемые» космоса. Первооснову космического вещества составляли водород и гелий; элементов среднего и тяжелого веса космическое вещество практически не содержало. Такие элементы — это «зола» ядерных «костров», пылающих в недрах звезд.
Как мы уже отмечали, ядро звезды представляет собой термоядерный реактор, в котором горючим служат в основном ядра водорода (протоны). Огромная температура заставляет протоны преодолевать электростатическое отталкивание и соударяться друг с другом. При соударении протоны сближаются до радиуса сильного ядерного взаимодействия и могут слиться в ядро (синтез). Правда, ядро, состоящее из двух протонов, неустойчиво. Но если один из протонов (в результате слабого взаимодействия) превратится в нейтрон, то образуется устойчивое ядро дейтерия. Такая реакция высвобождает значительную энергию, способствующую поддержанию в недрах звезды высокой температуры. Последующие реакции синтеза приводят к превращению дейтерия в гелий, образованию углерода, а затем и все более сложных ядер. По мере исчерпания запасов ядерного горючего звезды ее внутренняя структура представлена слоями различных химических элементов, каждый из которых отражает различные стадии ядерного синтеза. Так на протяжении своей «жизни» звезда постепенно превращается из смеси первичного водорода и гелия в хранилище тяжелых химических элементов.
На заключительном этапе эволюции такой звезды ядерные реакции уже не могут поддерживать необходимые значения температуры и давления, которые обеспечивают ее устойчивость. Неустойчивость звездной массы постепенно нарастает. В результате гравитация, выйдя из-под контроля, вызывает мгновенное сжатие звезды. Но внутреннее давление противостоит сжатию и приводит к выбросу гигантской энергии: внешние слои звезды буквально сдуваются в окружающее пространство, разбрасывая тяжелые элементы по просторам галактики. Подобный выброс обычно называют взрывом сверхновой (см. 11.4.2). Каждый взрыв сверхновой обогащает галактику тяжелыми элементами, из которых впоследствии и могут образоваться планетные системы, где возможны зарождение и эволюция жизни.
За всю историю развития нашей Галактики в ней вспыхнуло примерно один миллиард сверхновых звезд!