Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_po_statistike_2011-12g.doc
Скачиваний:
0
Добавлен:
24.04.2019
Размер:
839.17 Кб
Скачать
  1. Данные, необходимые для расчета и графического изображения шкалы регрессии

    • коэффициент регрессии — Rу/х;

    • уравнение регрессии — у = Му + Rу/х (х-Мx);

    • сигма регрессии — σRx/y

Другая важнейшая задача - измерение тесноты зависимости - для всех форм связи может быть решена при помощи вычисления эмпирического корреляционного отношения  :

 

где -   дисперсия в ряду выравненных значений результативного показателя   - дисперсия в ряду фактических значений у.

Для определения степени тесноты парной линейной зависимости служит линейный коэффициент корреляции r, для расчета которого можно использовать, например, две следующие формулы:

 

Линейный коэффициент корреляции может принимать значения в пределах от -1 до + 1 или по модулю от 0 до 1. Чем ближе он по абсолютной величине к 1, тем теснее связь. Знак указывает направление связи: «+» - прямая зависимость, «-» имеет место при обратной зависимости.

  1. Регрессионный анализ. Ошибки оценок коэффициентов регрессии. Проверка гипотез о значимости коэффициентов регрессии и уравнения регрессии в целом.

Определение регрессии. Регрессия — функция, позволяющая по средней величине одного признака определить среднюю величину другого признака, корреляционно связанного с первым.

С этой целью применяется коэффициент регрессии и целый ряд других параметров. Например, можно рассчитать число простудных заболеваний в среднем при определенных значениях среднемесячной температуры воздуха в осенне-зимний период.

Определение коэффициента регрессии. Коэффициент регрессии — абсолютная величина, на которую в среднем изменяется величина одного признака при изменении другого связанного с ним признака на установленную единицу измерения.

Формула коэффициента регрессии. Rу/х = rху x (σу / σx)  где Rу/х — коэффициент регрессии;  rху — коэффициент корреляции между признаками х и у;  (σу и σx) — среднеквадратические отклонения признаков x и у.

В нашем примере [rху = - 0,96 коэффициент корреляции между изменениями среднемесячной температуры в осенне-зимний период (х) и средним числом инфекционно-простудных заболеваний (у)];  σх = 4,6 (среднеквадратическое отклонение температуры воздуха в осенне-зимний период;  σу = 8,65 (среднеквадратическое отклонение числа инфекционно-простудных заболеваний).  Таким образом, Rу/х — коэффициент регрессии.  Rу/х = -0,96 х (4,6 / 8,65) = 1,8, т.е. при снижении среднемесячной температуры воздуха (x) на 1 градус среднее число инфекционно-простудных заболеваний (у) в осенне-зимний период будет изменяться на 1,8 случаев.

Уравнение регрессии. у = Му + Ry/x (х - Мx)  где у — средняя величина признака, которую следует определять при изменении средней величины другого признака (х);  х — известная средняя величина другого признака;  Ry/x — коэффициент регрессии;  Мх, Му — известные средние величины признаков x и у.

Например, среднее число инфекционно-простудных заболеваний (у) можно определить без специальных измерений при любом среднем значении среднемесячной температуры воздуха (х). Так, если х = - 9°, Rу/х = 1,8 заболеваний, Мх = -7°, Му = 20 заболеваний, то у = 20 + 1,8 х (9-7) = 20 + 3,6 = 23,6 заболеваний.  Данное уравнение применяется в случае прямолинейной связи между двумя признаками (х и у).

Назначение уравнения регрессии. Уравнение регрессии используется для построения линии регрессии. Последняя позволяет без специальных измерений определить любую среднюю величину (у) одного признака, если меняется величина (х) другого признака. По этим данным строится график — линия регрессии, по которой можно определить среднее число простудных заболеваний при любом значении среднемесячной температуры в пределах между расчетными значениями числа простудных заболеваний.

Сигма регрессии (формула).

где σRу/х — сигма (среднеквадратическое отклонение) регрессии;  σу— среднеквадратическое отклонение признака у;  rху — коэффициент корреляции между признаками х и у.

Так, если σу - среднеквадратическое отклонение числа простудных заболеваний = 8,65; rху — коэффициент корреляции между числом простудных заболеваний (у) и среднемесячной температурой воздуха в осенне-зимний период (х) равен — 0,96, то

Назначение сигмы регрессии. Дает характеристику меры разнообразия результативного признака (у).

Например, характеризует разнообразие числа простудных заболеваний при определенном значении среднемесячной температуры воздуха в осеннне-зимний период. Так, среднее число простудных заболеваний при температуре воздуха х1 = -6° может колебаться в пределах от 15,78 заболеваний до 20,62 заболеваний.  При х2 = -9° среднее число простудных заболеваний может колебаться в пределах от 21,18 заболеваний до 26,02 заболеваний и т.д.

Сигма регрессии используется при построении шкалы регрессии, которая отражает отклонение величин результативного признака от среднего его значения, отложенного на линии регрессии.

Данные, необходимые для расчета и графического изображения шкалы регрессии

    1. коэффициент регрессии — Rу/х;

    2. уравнение регрессии — у = Му + Rу/х (х-Мx);

    3. сигма регрессии — σRx/y

Стандартная ошибка является оценкой среднего квадратичного отклонения коэффициента регрессии от его истинного значения. Позволяет получить некоторое представление о форме функции плотности вероятности, однако не несёт информации о том, находится ли полученная оценка в середине распределения (т.е. является точной) или в его «хвосте» (т.е. является относительно неточной).

проверке гипотезы H0 остатистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт  и критического (табличного) Fтабл значений F-критерия ФишераFфактопределяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:

где   n – число единиц совокупности;

        m – число параметров при переменных x.

Fтабл – это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости a. Уровень значимости a  –  вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно принимается равной 0,05 или 0,01.

Если  Fтабл< Fфакт, то H0  – гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если  Fтабл> Fфакт, то H0 – гипотеза не отклоняется и признается статистическая незначимость, надежность уравнения регрессии.

2.  t-критерий Стьюдента используется для оценки статистической значимости коэффициентов регрессии и коэффициента  корреляции.

В качестве основной гипотезы вы­двигают гипотезу H0 о незначимом отличии от нуля параметра регрессии или коэффициента корреляции. Альтернативной гипотезой, при этом является гипотеза обратная, т.е. о неравенстве нулю параметра или коэффициента корреляции.

Найденное по данным наблюдений значение t-критерия (его еще называют наблюдаемым или фактиче­ским) сравнивается с табличным (критическим) значением, определяемым по таблицам распределения Стьюдента (ко­торые обычно приводятся в конце учебников и практикумов по статистике или эконометрике).

Табличное значение оп­ределяется в зависимости от уровня значимости (a) и числа степеней свободы, которое в случае линейной парной рег­рессии равно (n-2) , n - число наблюдений.

Если фактическое значение t-критерия больше таб­личного (по модулю), то считают, что с вероятностью (1-a) параметр регрессии (ко­эффициент корреляции) значимо отличается от нуля.

Если фактическое значение t-критерия меньше таб­личного (по модулю), то нет оснований отвергать основную гипотезу, т.е. параметр регрессии (коэффициент корреля­ции) незначимо отличается от нуля при уровне значимости a.

Фактические значения t-критерия определяются по формулам:

где   

Для проверки гипотезы о незначимом отличии от нуля коэффициента линейной парной корреляции используют критерий:

где r - оценка коэффициента корреляции, полученная по наблюдаемым данным. tтабл  остается прежним.

 

3.  Адекватность регрессионной модели оценим с помощью средней ошибки аппроксимации – среднее отклонение расчетных значений от фактических:

Допустимый предел значений     –  не более 8-10%.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]