
- •1. Почему нельзя сравнивать коэффициенты регрессии в натуральном
- •2.Цели и задачи статистики.
- •4. Какие виды выборочного наблюдения вам известны?
- •5. Основные виды графического предоставления статистической информации.
- •6. Кластерный анализ как статистический метод.
- •7.Медиана, мода, квартили, особенности применения
- •8. Назовете показатели динамики
- •9.Построение доверительных интервалов
- •10.Индексы и их классификация
- •12. Индексы цен Лайсперса, Пааше и Фишера
- •Экономическое содержание
- •Экономическое содержание
- •Идеальный индекс цен Фишера
- •13.Полигон распределения и гистограмма
- •14.Индексы постоянного и переменного состава и индекс структурных сдвигов
- •Индекс структурных сдвигов
- •15 Кумулятивная функция.
- •17.Основные правила построения графиков
- •18.Уравнение регрессии, его интерпретация
- •20. Коэффициент сопряженности Чупрова и коэффициент Крамера, их применение
- •21. Среднее арифметическое простое и взвешенное, особенности применения
- •22. Коэффициенты связи для дихотомических таблиц
- •23. Среднее геометрическое и квадратическое, особенности применения
- •24. Коэффициент сопряженности Пирсона, его применение
- •25. Среднее гармоническое и хронологическое, особенности применения
- •26. В чем состоит назначение ошибки аппроксимации?
- •27. Основные виды графического представления статистической информации
- •28. Коэффициент корреляции рангов Спирмена, его применение
- •29. Дисперсия и среднее квадратическое (стандартное) отклонение
- •31. Нормальное распределение признака
- •32. Виды скользящих средних
- •33. Стандартная ошибка
- •34. Коэффициент корреляции Пирсона, его применение
- •35. Статистический анализ временных рядов. Тренды и сезонность
- •38. Применение автокорреляции
- •41. Корреляционный анализ как статистический метод
- •44. Критерий Дарбина-Уотсона
- •Недостатки
- •45. Интервальные вариационные ряды
- •46. Корреляционное отношение h2, его применение
- •50. Временные ряды и их анализ
- •53. Размер и структура выборки
- •54. Коэффициент сопряженности Пирсона, его применение.
- •55. Перечислите основные группы пользователей официальной статистической информации.
- •56. Какие существуют способы распространения официальной статистической информации?
- •57. Из каких последовательных этапов состоит цикл работ по проведению статистического исследования?
- •58. Что понимается под административными данными?
- •59. Какие известны способы регистрации данных при статистическом наблюдении?
- •60. Раскройте смысл понятий «программа наблюдения» и «программа разработки итогов наблюдения».
- •61. Как соотносятся между собой понятия «признак единицы совокупности» и «статистический показатель»?
- •62. Каковы задачи типологической группировки?
- •63. Каковы задачи статистической сводки?
- •64. Какие условия определяют выбор формы средней?
- •65. Каковы основные свойства средней арифметической?
- •65(2). Как вычисляется средняя арифметическая по сгруппированным данным?
- •66. Какие задачи решают структурные средние?
- •67. В чем состоят особенности расчета медианы на основе дискретных и интервальных рядов динамика?
- •68. Как определяется мода для несгрупированныхданых и вариационных рядов.
- •70. С какой целью применяется выборочный метод в социально-экономической статистике?
- •1)Статистического оценивания и проверки гипотез
- •72. Чем отличаются ошибки репрезентативности от ошибок регистрации?
- •73. Как определяется необходимый объём выборочной совокупности?
- •74. Как на основе средней ошибки репрезентативности определить предельное значение ошибки репрезентативности?
- •75. Какие существуют виды стратифицированной выборки?
- •76. Каков порядок распространения выборочных результатов на генеральную совокупность?
- •77. Что понимается под малой выборкой?
- •79. Какие задачи позволяет решать дисперсионный анализ?
- •89. Поясните смысл частных линейных коэффициентов эластичности.
15 Кумулятивная функция.
Кумулята служит для графического изображения кумулятивного вариационного ряда.
Для ее построения на оси абсцисс откладывают значения аргумента, а на оси ординат - накопленные частоты или накопленные относительные частоты. Масштаб на каждой оси выбирают произвольно. Далее строят точки, абсциссы которых равны вариантам (в случае дискретных рядов) или верхним границам интервалов (в случае интервальных рядов), а ординаты - соответствующим частотам (накопленным частотам). Эти точки соединяют отрезками прямой. Полученная ломаная и является кумулятой.
По данным таблицы составляют кумулятивный вариационный ряд, для которого построить кумуляту.
Гистограмму используют для изображения интервальных рядов.
При графическом изображении вариационного ряда с помощью гистограммы плотность изображается так, как если бы она оставалась постоянной внутри каждого интервала. Если построить распределение по частям интервалов, то можно убедиться в том, что плотность распределения на различных участках интервала не остается постоянной.
Плотность, полученная ранее, предствляла лишь некоторую среднюю плотность.
гистограмма изображает лишь средние плотности распределения на каждом интервале.
Если построена гистограмма интервального распределения, то полигон того же распределения можно получить, если соединить прямолинейными отрезками середины верхних оснований прямоугольников.
17.Основные правила построения графиков
Каждый график должен содержать следующие основные элементы:
– Графический образ – геометрические знаки,
совокупность точек, линий, фигур, с помощью которых изображаются статистические
величины; язык графики.
– Поле графика – пространство, в котором
размещаются геометрические знаки.
– Система координат – необходима для размещения
геометрических знаков на поле графика.
– Масштабные ориентиры – определяются масштабом и масштабной шкалой.
· Масштаб – мера перевода числовой величины в графическую.
· Масштабная шкала – линия,
отдельные точки которой могут быть прочитаны как определенные числа. Шкалы
бывают равномерными и неравномерными. Масштаб равномерной шкалы
– это длина отрезка, принятого за единицу измерения и измеренного в каких-либо
определенных мерах.
18.Уравнение регрессии, его интерпретация
Уравнение регрессии используется для построения линии регрессии. Последняя позволяет без специальных измерений определить любую среднюю величину (у) одного признака, если меняется величина (х) другого признака. По этим данным строится график — линия регрессии, по которой можно определить среднее число простудных заболеваний при любом значении среднемесячной температуры в пределах между расчетными значениями числа простудных заболеваний.
Уравнение регрессии. у = Му + Ry/x (х - Мx) где у — средняя величина признака, которую следует определять при изменении средней величины другого признака (х); х — известная средняя величина другого признака; Ry/x — коэффициент регрессии; Мх, Му — известные средние величины признаков x и у.