- •1. Почему нельзя сравнивать коэффициенты регрессии в натуральном
- •2.Цели и задачи статистики.
- •4. Какие виды выборочного наблюдения вам известны?
- •5. Основные виды графического предоставления статистической информации.
- •6. Кластерный анализ как статистический метод.
- •7.Медиана, мода, квартили, особенности применения
- •8. Назовете показатели динамики
- •9.Построение доверительных интервалов
- •10.Индексы и их классификация
- •12. Индексы цен Лайсперса, Пааше и Фишера
- •Экономическое содержание
- •Экономическое содержание
- •Идеальный индекс цен Фишера
- •13.Полигон распределения и гистограмма
- •14.Индексы постоянного и переменного состава и индекс структурных сдвигов
- •Индекс структурных сдвигов
- •15 Кумулятивная функция.
- •17.Основные правила построения графиков
- •18.Уравнение регрессии, его интерпретация
- •20. Коэффициент сопряженности Чупрова и коэффициент Крамера, их применение
- •21. Среднее арифметическое простое и взвешенное, особенности применения
- •22. Коэффициенты связи для дихотомических таблиц
- •23. Среднее геометрическое и квадратическое, особенности применения
- •24. Коэффициент сопряженности Пирсона, его применение
- •25. Среднее гармоническое и хронологическое, особенности применения
- •26. В чем состоит назначение ошибки аппроксимации?
- •27. Основные виды графического представления статистической информации
- •28. Коэффициент корреляции рангов Спирмена, его применение
- •29. Дисперсия и среднее квадратическое (стандартное) отклонение
- •31. Нормальное распределение признака
- •32. Виды скользящих средних
- •33. Стандартная ошибка
- •34. Коэффициент корреляции Пирсона, его применение
- •35. Статистический анализ временных рядов. Тренды и сезонность
- •38. Применение автокорреляции
- •41. Корреляционный анализ как статистический метод
- •44. Критерий Дарбина-Уотсона
- •Недостатки
- •45. Интервальные вариационные ряды
- •46. Корреляционное отношение h2, его применение
- •50. Временные ряды и их анализ
- •53. Размер и структура выборки
- •54. Коэффициент сопряженности Пирсона, его применение.
- •55. Перечислите основные группы пользователей официальной статистической информации.
- •56. Какие существуют способы распространения официальной статистической информации?
- •57. Из каких последовательных этапов состоит цикл работ по проведению статистического исследования?
- •58. Что понимается под административными данными?
- •59. Какие известны способы регистрации данных при статистическом наблюдении?
- •60. Раскройте смысл понятий «программа наблюдения» и «программа разработки итогов наблюдения».
- •61. Как соотносятся между собой понятия «признак единицы совокупности» и «статистический показатель»?
- •62. Каковы задачи типологической группировки?
- •63. Каковы задачи статистической сводки?
- •64. Какие условия определяют выбор формы средней?
- •65. Каковы основные свойства средней арифметической?
- •65(2). Как вычисляется средняя арифметическая по сгруппированным данным?
- •66. Какие задачи решают структурные средние?
- •67. В чем состоят особенности расчета медианы на основе дискретных и интервальных рядов динамика?
- •68. Как определяется мода для несгрупированныхданых и вариационных рядов.
- •70. С какой целью применяется выборочный метод в социально-экономической статистике?
- •1)Статистического оценивания и проверки гипотез
- •72. Чем отличаются ошибки репрезентативности от ошибок регистрации?
- •73. Как определяется необходимый объём выборочной совокупности?
- •74. Как на основе средней ошибки репрезентативности определить предельное значение ошибки репрезентативности?
- •75. Какие существуют виды стратифицированной выборки?
- •76. Каков порядок распространения выборочных результатов на генеральную совокупность?
- •77. Что понимается под малой выборкой?
- •79. Какие задачи позволяет решать дисперсионный анализ?
- •89. Поясните смысл частных линейных коэффициентов эластичности.
34. Коэффициент корреляции Пирсона, его применение
Линейный корреляционный анализ позволяет установить прямые связи между переменными величинами по их абсолютным значениям. Формула расчета коэффициента корреляции построена так, что если связь между признаками имеет линейный характер, коэффициент Пирсона точно устанавливает тесноту этой связи. Поэтому он называется также коэффициентом линейной корреляции Пирсона.
Расчет коэффициента корреляции Пирсона предполагает, что переменные и распределены нормально.
Даная формула предполагает, что из каждого значения переменной X, должно вычитаться ее среднее значение .
Для применения коэффициента корреляции Пирсона, необходимо соблюдать следующие условия:
Сравниваемые переменные должны быть получены в интервальной шкале или шкале отношений.
Распределения переменных X и Y должны быть близки к нормальному.
Число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.
35. Статистический анализ временных рядов. Тренды и сезонность
Ана́лиз временны́х рядо́в — совокупность математико-статистических методов анализа, предназначенных для выявления структуры временных рядов и для их прогнозирования. (методы регрессионного анализа)
Выявление структуры временного ряда необходимо для того, чтобы построить математическую модель того явления, которое является источником анализируемого временного ряда.
Временные ряды, возникают в результате измерения некоторого показателя. Типичным примером временного ряда можно назвать биржевой курс, при анализе которого пытаются определить основное направление развития (тенденцию или тренда).
Понятие тенденция развития не имеет достаточно четкого определения. Обычно тенденцию стремятся представить в виде более или менее гладкой кривой, которой соответствует некоторая функция времени.
Тренд описывает некоторую усредненную для достаточно протяженного периода наблюдения тенденцию развития во времени.
Наиболее часто в экономике при аппроксимации тренда используются следующие виды функций:
линейная , параболическая , степенная ,
экспоненциальная , функция Гомперца , логистическая
Тренд, представляющий собой плавное изменение процесса во времени и обусловленный действием долговременных факторов
а) изменение демографических характеристик популяции (численности, возрастной структуры);
б) технологическое и экономическое развитие; в) рост потребления.
Сезонный эффект, связанный с наличием факторов, действующих циклически с заранее известной периодичностью. Ряд в этом случае имеет иерархическую шкалу времени. (изменение загруженности автотрассы в течение суток, по дням недели, временам года)
38. Применение автокорреляции
Автокорреляция - это взаимосвязь последовательных элементов временного или пространственного ряда данных. В эконометрических исследованиях часто возникают и такие ситуации, когда дисперсия остатков постоянная, но наблюдается их ковариация. Это явление называют автокорреляцией остатков.
Автокорреляцией остатков модели регрессииei (или случайных ошибок регрессии модели βi) называется корреляционная зависимость между настоящими и прошлыми значениями остатков.
Временным лагом называется величина сдвига между рядами остатков модели регрессии.
Величина временного лага определяет порядок коэффициента автокорреляции.
Одно из условий, заключается в том что ковариация случайных ошибок любых двух разных наблюдений равна нулю:
При анализе временных рядов автокорреляционная функция характеризует внутреннюю зависимость между временным рядом и тем же рядом, но сдвинутым на некоторый промежуток времени (сдвиг)
Наличие автокорреляции затрудняет применение ряда классических методов анализа временных рядов.
В моделях регрессии, описывающих зависимости между случайными значениями взаимосвязанных величин, она снижает эффективность применения метода наименьших квадратов.
Поэтому применяются специальные статистические приемы для ее выявления (напр., критерий Дарбина — Уотсона) и элиминирования