
- •2. Понятие о форме и размерах Земли
- •3. Системы координат и высот, применяемые в геодезии
- •Ориентирование линий, истин. И магнит. Азимуты, формулы связи.
- •5. Соотношение между истинным азимутом и румбами
- •6. Истинный и магнитный азимут, дирекционный угол и формулы связи.
- •7. Приборы для ориентирования на
- •8. Прямая и обратная геодезические задачи
- •9. Изображение земной поверхности на плоскости.
- •10. Топографические материалы: план, карта, профиль
- •13. Разграфка и номенклатура топографических планов и карт
- •14. Условные знаки топографических планов и карт
- •15, Рельеф местности и его изображение на планах и картах.
- •17. Изображение рельефа Горизонталями и их свойства
- •19. Решение инженерных задач по планам и картам
- •20. Определение площадей по картам и планам
- •21. Устройство полярного планиметра и работа с ним.
- •22 Абсолютная и относительная высоты.
- •23. Классификация погрешностей геодезических измерений.
- •24.Свойства случайных погрешностей
- •26. Закон нормального распределения погрешностей.
- •Оценка точности в равноточных измерениях
- •28. Средняя квадратическая погрешность функции измерения величин
- •29. Неравноточные измерения
- •30. Формула общей арифметической середины
- •29. Неравноточные измерения
- •30. Формула общей арифметической середины
- •31. Оценка точности в Неравноточные измерения
- •32. Принцип измерения углов. Классификация теодолитов
- •33. Основные части теодолита
- •34. Отсчетные устройства.
- •36. Измерение горизонтальных углов. Точность измерений
- •37. Измерение магнитных азимутов теодолитом
- •38. Измерение вертикальных углов. Точность.
- •39. Вертикальный круг. Место нуля.
- •40. Простейшие угломерные приборы: экер и эклиметр
- •41. Непосредственные и косвенные измерения. Приборы
- •43. Горизонтальное проложение наклонной линии
- •44. Нитяной дальномер, его устройство и точность
- •45. Измерение расстояний светодальномерами и лазерными рулетками
- •46. Определение недоступных расстояний
- •47. Сущность, значение и виды нивелирования
- •48. Способы геометрического нивелирования. Нивелирный ход.
- •49. Тригонометрическое нивелирование
- •Методы барометрического, гидростатич., механич. Нивелирования.
- •51. Нивелиры, их классификация.
- •54. Нивелирные рейки и их поверки
- •56. Влияние кривизны Земли и рефракции на результаты геомет. Нивелир.
- •57. Государственная нивелирная сеть. Нивелирные знаки
- •58. Техническое нивелирование.
- •59. Общие сведения о плановых геодезических сетях.
- •60. Методы построения плановых геодезических сетей
- •Государственные геодезические сети
- •62. Геодезические сети сгущения
- •63. Теодолитные ходы и их виды
- •64. Привязка теодолитных ходов к пунктам опорной геодезической сети
- •65. Построение съемочной сети методом микротриангуляции
- •66. Способы топографических съемок. Выбор масштаба съемки и высоты сечения рельефа
- •67. Камеральные работы при теодолитной съемке
- •68. Составление планов теодолитной съемки
26. Закон нормального распределения погрешностей.
Предельная погрешность
О появлении отдельной погрешности заранее что–либо определенное сказать невозможно. Однако, когда число этих погрешностей возрастает, можно установить определенные закономерности для всей совокупности погрешностей данного ряда измерений.
Эти закономерности можно выразить уравнением, полученным К. Ф. Гауссом.
__ 2 2 __ 2 2
y = (1 / σ √2π ) e – (li – a) / 2σ = (1 /σ √2π ) e – Δc / 2σ , (4.17)
где y – плотность распределения погрешностей;
σ
– параметр
уравнения, называемый стандартом, связан
со средней
квадратической погрешностью соотношением
a
– параметр
уравнения, называемый математическим
ожиданием,
связан с арифметической срединой соотношением
e – основание натуральных логарифмов;
Δi = li – a – случайная погрешность.
Это уравнение называется законом нормального распределения погрешностей.
Уравнению
(4.17) соответствует колоколообразная
кривая, называемая кривой нормального
распределения (кривая Гаусса) (рисунок
4.1)
Рисунок 4.1 – Кривая Гаусса
Площадь под кривой, ограниченная кривой и осью абсцисс, принимают равной единице. Часть этой площади, соответствующая какому-либо отрезку оси абсцисс, дает, вероятность попадания случайной погрешности в данный интервал. При li = a или Δ = 0 получаем максимальное значение ординаты кривой __
Y = 1 / σ √2π.
Из рисунка 4.1 видно, что основная масса погрешностей группируется около наиболее вероятного значения погрешности Δi = 0 (согласно четвертому свойству случайных погрешностей, среднее арифметическое из случайных погрешностей стремится к нулю). Это положение обосновывает третье свойство случайных погрешностей (малые погрешности встречаются чаще, чем большие). Второе свойство случайных погрешностей о равном появлении положительных и отрицательных ошибок характеризуется симметричностью кривой нормального распределения относительно оси OY.
Теоретические исследования и практика геодезических измерений показывают, что в промежутках от –m до +m попадает 68 % всех случайных погрешностей (см. рисунок 4.1), в промежуток вдвое больший (от –2m до +2m) попадает 95 % погрешностей, а в промежуток втрое больший (от –3m до +3m) попадает 99,73 % погрешностей. Это означает, что из 100 погрешностей измерений только 32 по абсолютной величине превзойдут среднюю квадратическую погрешность m, 3 из 1000 погрешностей будет превышать величину утроенной средней квадратической погрешности ±3m. Таким образом, за пределы ±3m выходит лишь 0,27 % погрешностей измерений. Поэтому в качестве предельной погрешности Δпред принимается утроенная средняя квадратическая погрешность, т. е.
Δпред = 3m. (4.18)
Рассмотрим теперь сущность параметров a и σ в уравнении (4.17). Параметр a называемый математическим ожиданием и характеризует центр группирования на кривой Гаусса, т. е. смещение центра группирования вдоль оси абсцисс (рисунок 4.2, а) при сохранении формы кривой. Если при постоянном значении параметра a будем изменять другой параметр σ (называемый стандартом), характеризующий точность измерений, а это возможно, если мы меняем метод измерений или выполняем их другими приборами. Тогда центр группирования остается неизменным, а форма кривой изменится. Она станет более пологой, если точность измерений уменьшается, и станет более крутой при увеличении точности (рисунок 4.2, б).
Рисунок 4.2 – Смещение и изменение формы нормальной кривой
Параметры a и σ заранее, до измерений, неизвестны. Они получаются как результат большого числа измерений. На практике вместо параметров a и σ мы получаем приближенные их значения: арифметическую средину L, вычисляемую по формуле (4.4), и среднюю квадратическую погрешность m, вычисляемую по формулам (4.5) или (4.15).