
- •Лекция 2. Структурные элементы нервной системы
- •Лекция 3. Мембранные потенциалы нервных элементов в покое и при возбуждении.
- •3.1. Мембранный потенциал покоя
- •3.2. Потенциал и трансмембранные токи при возбуждении
- •Лекция 4. Распространение электрона и проведение потенциала действия
- •Лекция 5. Электрофизиология нервного ствола
- •Лекция 6. Синапсы.
- •6.1. Электрофизиология синапсов Электрический синапс
- •2. Схема работы возбуждающего электрического синапса (а) и временные соотношения пресинаптического и постсинаптического пд (б).
- •Химический синапс
- •Возбуждающие химические синапсы
- •Тормозящие химические синапсы
- •Лекция 7. Нервные сети и основные законы их функционирования
- •7.1. Рефлексы и рефлекторные дуги
- •Лекция 8. Общие принципы координационной деятельности центральной нервной системы.
- •8.1. Интегративная и координационная деятельность нервной клетки
- •8.2. Принцип общего конечного пути
- •8.3. Временная и пространственная суммация. Окклюзия.
- •8.4. Торможение
- •8.5. Принцип доминанты
- •9.1. Нейронные структуры и их свойства
- •9.2. Рефлекторная функция спинного мозга
- •9.3. Проводниковые функции спинного мозга
- •9.3.1. Нисходящие проводящие пути.
- •Лекция 10. Задний мозг.
- •10.1. Строение заднего мозга
- •10.2. Рефлексы заднего мозга.
- •10.3. Функции ретикулярной формации заднего мозга
- •Лекция 11.Средний мозг.
- •11.1. Морфофункциональная организация среднего мозга
- •11.2. Участие среднего мозга в регуляции движений и позного тонуса
- •Лекция 12. Мозжечок.
- •12.1. Структурная организация и связи мозжечка.
- •12.2. Функции мозжечка
- •Лекция 13.Промежуточный мозг.
- •13.1. Структура промежуточного мозга
- •13.1.1. Морфофункциональная организация таламуса
- •13.1.2. Гипоталамус
- •13.1.3. Роль гипоталамуса в регуляции вегетативных функций
- •13.1.4. Терморегуляционная функция гипоталамуса
- •13.1.5. Участие гипоталамуса в регуляции поведенческих реакций
- •13.2. Лимбическая система
- •13.2.1. Анатомические структуры лимбической системы
- •13.2.2. Функции лимбической системы
- •13.2.3. Роль лимбической системы в формировании эмоций
- •Лекция 14. Базальные ганглии и их функции.
- •Лекция 15. Кора больших полушарий.
- •15.1. Морфофункциональная организация коры больших полушарий
- •15.2. Проекционные зоны коры
- •15.3. Колончатая организация зон коры
- •Лекция 16. Физиология зрения.
- •16.1. Глаз
- •16.1.1. Оптическая система глаза.
- •16.1.2. Регуляторные процессы в диоптрическом аппарате.
- •16.1.3. Сетчатка
- •16.1.4. Проекции сетчатки на цнс.
- •16.2. Нейронная основа восприятия формы.
- •Лекция 17. Физиология слуха
- •17.1. Анатомия органа слуха
- •17.2. Наличие звука и субъективное слуховое ощущение
- •17.3. Функции среднего и внутреннего уха
- •17.3.1. Роль среднего уха.
- •17.4. Прием звука внутренним ухом. Теория места.
- •17.4.1. Рецепция стимула волосковыми клетками.
- •17.4.2. Глухота при поражении среднего или внутреннего уха.
- •17.5. Слуховой нерв и высшие уровни слухового пути
- •17.5.1. Анатомия слухового пути.
- •17.5.2. Характеристики ответов центральных слуховых нейронов.
- •17.6. Адаптация в слуховой системе.
- •Лекция 18. Физиология чувства равновесия
- •18.1. Анатомия и физиология периферического органа. Рецепторы органа равновесия и стимулы, их возбуждающие.
- •18.1.1. Структура и функция статолитовых органов и полукружных каналов.
- •18.1.2. Угловые ускорения
- •18.1.3. Поведение купулы при кратковременном и длительном вращении.
- •18.2. Центральные механизмы чувства равновесия
- •18.2.1. Центральные связи рецепторов вестибулярного органа.
- •18.2.2. Статические и статокинетические рефлексы. Вестибулярный нистагм.
- •18.2.3. Клиническое значение нистагма.
- •Лекция 19. Физиология вкуса
- •19.1. Морфология органов вкуса; субъективная физиология вкуса. Ориентация и строение вкусовых почек.
- •19.2. Центральные связи.
- •19.3. Основные вкусовые ощущения.
- •19.4. Интенсивность ощущений.
- •19.5. Объективная физиология вкуса.
- •19.6. Первичный процесс.
- •19.7. Роль вкусовой чувствительности.
- •Лекция 20. Физиология обоняния
- •20.1. Локализация и клеточная организация обонятельного эпителия.
- •20.1.1. Запахи.
- •20.2. Кодирование.
- •20.3. Субъективная физиология обоняния, центральные связи
- •20.4. Порог обнаружения и порог опознания.
- •20.4.1.Стимуляция волокон тройничного нерва.
- •20.5. Центральные связи.
19.4. Интенсивность ощущений.
Простое сравнение разных растворов показывает, что интенсивность вкусового ощущения зависит от концентрации вещества. При определении порогов обнаружено, что эффект от разбавления раствора стимулирующего вещества может быть компенсирован стимуляцией большей поверхности языка, т.е. большего числа рецепторов Вероятно, это происходит благодаря пространственной суммации. В пороговой области существует входное соотношение между концентрацией и продолжительностью действия стимула. Кроме того, следует помнить, что чувство вкуса подвержено определенной адаптации -при длительном действии стимула интенсивность ощущения снижается. Еще одним фактором является секреция серозных желез, которая разжижает действующее у вкусовых луковиц вещество и тем самым влияет на интенсивность ощущения.
Испытание ряда разведений солевых растворов в околопороговой области во многих случаях показывает, что ощущение может менять свое качество в зависимости от концентрации. Растворы столовой соли 0,02-0,03 моль/л имеют сладкий вкус, а в концентрации 0,04 моль/л или больше - соленый. Этот сдвиг качества, вероятно, можно понять, исходя из того, что вкусовые волокна обладают широким спектром чувствительности в пределах каждого качества.
Разные области языка у человека варьируют по чувствительности к четырем основным качествам. Кончик языка особенно чувствителен к сладким веществам, средние части краев отвечают лучше всего на кислые стимулы. Соленые стимулы всего эффективнее в области края языка, которая частично перекрывает первые две. Горькие вещества сильнее всего действуют на рецепторы близ корня языка, в области желобоватых сосочков. Поэтому повреждение языкоглоточного нерва понижает способность к обнаружению горечей, а после блокады проведения в лицевом нерве обнаруживаются только они одни.
19.5. Объективная физиология вкуса.
В этом разделе речь пойдет о том, что способность к различению вкусовых качеств, весьма возможно, зависит от специфичности рецепторных молекул в мембранах сенсорных клеток. Может показаться удивительным, чтобы такой механизм отражался лишь диффузно или совсем не отражался в специфичности ответа отдельной сенсорной клетки и афферентного волокна. Как в таком случае может кодироваться качество и концентрация? На этот вопрос можно ответить, если принять во внимание совокупность ответов множества клеток или волокон. Поэтому сначала мы опишем их, а в заключение вкратце рассмотрим биологическое значение чувства вкуса.
Для регистрации активности как отдельных сенсорных клеток, так и афферентных волокон можно воспользоваться микроэлектродами. Такие записи показывают, что ни сами рецепторы, ни волокна, идущие к ЦНС, не дают качественно специфических ответов; как правило, эффективными оказываются стимулы более чем одной категории. Очевидно, что каждое волокно реагирует на стимулы нескольких категорий, но при рассмотрении разных градаций чувствительности выявляются различия. Иными словами, стимуляция раствором вещества в определенной концентрации активирует различные волокна в разной степени. Характер возбуждения, типичный для каждого отдельного волокна при ответах на ряд веществ, называется вкусовым профилем. Волокнами, наиболее близкими к качественной специфичности, являются те, которые реагируют на растворы Сахаров увеличением частоты разрядов. Сравнительные исследования показали, что такие относительно специфичные волокна особенно характерны для обезьян.
Регистрация активности отдельных сенсорных клеток показала, что они обладают градуальной относительной специфичностью. Ответы волокон, идущих от этих клеток, в этом отношении отражают ответы клеток. Но афферентные волокна ветвятся во вкусовых луковицах, так что каждое волокно получает возбуждение от многих сенсорных клеток, которые, надо полагать, различаются по степени специфичности. Кроме того, обнаружено, что сенсорные клетки в разных сосочках образуют синапсы с коллатералями от одного афферентного волокна. Это значит, что вкусовые волокна получают входы от сенсорных клеток, распределенных по значительным участкам языка. Эти участки называются рецептивными полями. Ситуация с рецептивными полями усложняется тем, что отдельные сенсорные клетки могут получать иннервацию от нескольких различных волокон.
Суммируя, надо сказать, что градуальная относительная специфичность вкусовых волокон создается 1) градуальной относительной специфичностью сенсорных клеток и 2) ветвлением вкусовых волокон, создающим рецептивные поля. Частота импульсации в одиночном афферентном волокне поэтому меняется как от качества стимула, так и от его концентрации. Разумеется, важным фактором является также степень, в какой стимулируемая область покрывает рецептивное поле волокна. Очевидным выводом в отношении кодирования стимула является то, что активность одного волокна не может дать однозначную информацию о качестве или концентрации. Только сравнение уровня возбуждения в нескольких волокнах может выявить характерные распределения (паттерны) активности, которые говорят что-то о качестве стимула. При условии, что качество известно, частота импульсации в каждом отдельном волокне может служить мерой концентрации стимулирующего вещества. Отличительные черты вещества, следовательно, кодируются таким образом, что сложный, но характерный паттерн возбуждения создается одновременными, но разными ответами множества нейронов.