
- •6.1 Контрольные вопросы для зачёта по дисциплине:
- •Краткая история развития вт
- •Базовая структура машины Джона фон Неймана
- •Поколения эвм
- •Представление информации в эвм
- •2.2.2. Представление других видов информации
- •2.1. Системы счисления
- •2.1.1. Перевод целых чисел
- •2.1.2. Перевод дробных чисел
- •2.6. Прямой, обратный и дополнительный коды
- •2.6.1. Прямой код
- •2.6.2. Обратный код
- •2.6.3. Дополнительный код
- •2.6.8. Модифицированные коды
- •2.4.1.Основные сведения из алгебры логики
- •2.4.3. Понятие о минимизации логических функций
- •Диаграмма Вейча функции y
- •2.4.4. Техническая интерпретация логических функций
- •Диаграмма Вейча для функции f
- •Классификация элементов и узлов эвм
- •3.3. Схемы с памятью
- •Условия работы триггера
- •Диаграмма Вейча для таблицы переходов триггера
- •Общие принципы построения современных эвм
- •3.1. Операционные устройства (алу)
- •3.2. Управляющие устройства
- •3.2.1. Уу с жесткой логикой
- •3.2.2. Уу с хранимой в памяти логикой
- •3.2.2.1. Выборка и выполнение мк
- •3.2.2.3. Кодирование мк
- •3.2.2.4. Синхронизация мк
- •5.2.1. Структура базового микропроцессора
- •Характеристики микропроцессоров фирмы Intel
- •Структура микропроцессора
- •5.2.3. Взаимодействие элементов при работе микропроцессора
- •Структура памяти эвм
- •4.2. Способы организации памяти
- •4.2.1. Адресная память
- •4.2.2. Ассоциативная память
- •4.2.3. Стековая память (магазинная)
- •4.5. Постоянные зу (пзу, ппзу)
- •4.6. Флэш-память
- •5.1.2. Размещение информации в основной памяти ibm pc
- •Назначение, принцип работы и организация системы прерываний эвм
- •Возможные структуры систем прерывания
- •Характеристики систем прерывания
- •Принципы организации ввода / вывода информации в эвм
- •8.1. Общие принципы организации вв
- •8.2. Программный вв
- •8.3. Вв по прерываниям
- •8.4. Вв в режиме пдп
- •8.4.1. Пдп с захватом цикла
- •8.4.2. Пдп с блокировкой процессора
- •Интерфейсы периферийных устройств
- •Последовательный порт
- •Системы визуального отображения информации (видеосистемы)
- •.2. Клавиатура
- •7.3. Принтер
- •.4. Сканер
- •7.5. Анимационные устройства ввода-вывода
- •7.6. Устройства ввода-вывода звуковых сигналов
- •Глава 8. Внешние запоминающие устройства (взу)
- •8.1. Внешние запоминающие устройства на гибких магнитных дисках
- •Стандартные форматы нгмд ms dos
- •8.2. Накопитель на жестком магнитном диске
- •8.3. Стриммер
- •8.4. Оптические запоминающие устройства
- •Основные внешние устройства пк
- •Компоненты материнской платы
- •Разновидности слотов
- •Типы разъемов оперативной памяти
- •Разъемы для подключения внешних устройств
- •Разъемы для подключения дисковых устройств
- •Разъемы процессоров
- •Интерфейс
- •Шинная структура
- •Типы обмена по системной магистрали.
- •Магистраль процессора.
- •Формирование сигналов системной магистрали
- •Магистрально-модульный принцип построения компьютера
- •Принципы организации арбитража магистрали
- •Классификация мп
- •2 Типы микропроцессоров
- •3.7.3 Характеристики мп
- •Структура типового микропроцессора
- •Логическая структура микропроцессора
- •Типы архитектур
- •Микропроцессорные устройства.
- •1. Технология медной металлизации
- •2. Технология soi («кремний-на-изоляторе»)
- •3. Технология Low-k dielectric
- •4. SiGe: кремниево-германиевые микросхемы
- •5. Напряженный кремний
- •1.1. Общая структура микропроцессорной системы
- •Уровни представления микропроцессорной системы
- •1.2. Построение микропроцессорных систем с использованием различных микропроцессорных комплектов
- •1.3. Основные этапы разработки микропроцессорной системы
- •Лекция 13. Рабочие станции и серверы Классификация вычислительных систем. Персональные компьютеры и рабочие станции. X-терминалы. Cерверы. (6 ч.) Классификация вычислительных систем
- •Рабочая станция
- •Микроэвм
- •Классификация аппаратных средств вычислительных систем по ф.Г. Энслоу
- •1. С общей шиной.
- •2. С перекрестной коммутацией.
- •3 Мпвк с многовходовыми озу.
- •4. Ассоциативные вс.
- •5. Матричные системы.
- •6. Конвейерная обработка информации.
- •Признаки суперЭвм
- •Сферы применения суперкомпьютеров
- •Архитектура современных суперЭвм
- •Векторные суперкомпьютеры [simd]
- •Многопроцессорные векторные суперкомпьютеры (mimd)
- •Лекция 17. Проблемно-ориентированные эвм
- •Основы конфигурирования серверов баз данных
Разъемы для подключения дисковых устройств
FDD (Floppy Disk Drivers – накопитель на гибких магнитных дисках) конструктивно представляет собой 12х2-контактный игольчатый разъем с возможностью подключения двух дисководов. Устройство, подключенное к перевитому шлейфу, является диском A:, к прямому – B:. Реализовано одновременное обращение только к одному устройству.
HDD (Hard Disk Drivers – накопитель на жестких магнитных дисках) – конструктивно может быть выполнен в нескольких вариантах. Обычно это IDE или SCSI.
IDE (Integrated Drive Electronics) – более дешевый и в настоящее время самый распространенный интерфейс. Конструктивно представляет собой 2х20-контактный игольчатый разъем. Стандартно контроллер IDE имеет один такой разъем, к которому можно подключить до двух дисковых устройств. Стандартно на материнской плате собраны 2 IDE контроллера Primary и Secondary. Существуют также несколько протоколов обмена данными: UDMA/33 – 33 Мбайт/с и UDMA/66 – 66 Мбайт/с. Протокол UDMA/66 обладает вдвое большей скоростью передачи данных за счет того, что данные передаются по обоим фронтам тактирующего сигнала в отличие от UDMA/33. Для реализации интерфейса необходим шлейф, в котором бы отсутствовали помехи от двух параллельно идущих проводников. Для решения этой проблемы применяется 80-жильный шлейф, каждый второй проводник которого соединен с общим проводом для уменьшения помех.
SCSI (Small Computer System Interface) – более дорогой и в настоящее время менее распространенный интерфейс. Один контроллер может обслуживать от 1 до 32 устройств в зависимости от конструкции. Контроллер SCSI внешне представляет собой либо плату расширения, либо устройство, встроенное в материнскую плату. В последнем случае мы можем видеть лишь 25х2-контактный игольчатый разъем. Скорость обмена по каналу SCSI до 20 Мбайт/с.
UWSCSI (Ultra Wide SCSI) является модификацией интерфейса SCSI. Внешне также представляет собой плату расширения или устройство, встроенное в материнскую плату, и тогда мы можем видеть 34х2-контактный трапецеидальный разъем плюс для поддержки SCSI 25x2-контактный игольчатый разъем. Скорость обмена по каналу UWSCSI до 80 Мбайт/с.
Разъемы процессоров
Собственно говоря, процессор как раз то устройство, которое производит все вычисления и управляет всеми контроллерами. Так как же определить, какой процессор вы сможете поставить в ту материнскую плату, которую выбрали? На данный момент существует достаточно много типов разъемов для установки процессора. Это Socket 7, Socket 370, Socket FC-PGA, Slot I, Slot A. Среди такого количества несложно и запутаться, но не волнуйтесь, сейчас все подробно разберем.
Тип разъемов Socket-ZIF (Zero Input Force – вставляй, не прикладывая сил) конструктивно представляет пластиковый разъем с зажимающей защелкой, расположенной сбоку корпуса разъема, предназначенной для предотвращения самопроизвольного выпадения процессора. При установке процессора защелка должна быть максимально поднята вверх.
Разъем Socket 7 – стандартный ZIF (Zero Input Force) – разъемом с 296 контактами, использующийся всеми процессорами класса Р5 – Intel Pentium, AMD K5 и K6, Cyrix 6x86 и 6x86MX и Centaur Technology IDT-C6.
Разъем Socket 8 – нестандартный ZIF– имеет 387 контактов и несовместим с Socket 7, предназначен для установки в него процессора класса Р6 – Pentium Pro. Поскольку ядро процессора и кэш были объединены на одном кристалле, то и форма его получилась прямоугольной, а не квадратной, как у Socket 7.
Разъем Socket 370 – нестандартный ZIF– несовместим ни с Socket 7, ни с Socket 8, предназначен для установки в него более дешевого прототипа P6 Celeron, за исключением последней модели Celeron II, построенной по технологии Coppermine.
Разъем Socket FC-PGA (Flip Chip Pin Grid Array) внешне напоминает Socket 370. В отличие от 370 на FC-PGA заводится два питания 1,5В и 1,6В, и предназначен он для установки в него процессоров, произведенных по технологии Coppermine.
Тип разъема Slot конструктивно представляет пластиковый разъем с двумя рядами контактов, в него вставляются процессоры с ножевым разъемом. Фирма INTEL пошла на это в связи с тем, что для удешевления стоимости процессора кэш был вынесен с кристалла и стал располагаться на плате процессора, которая имеет ножевой двухсторонний разъем.
Тип разъема Slot I предназначен для установки в него процессора P6 Pentium II, Pentium III и процессора P6 Celeron Slot I.
Тип разъема Slot 2 отличается от Slot I по коммерческим причинам, так как в него ставятся более дорогие модели процессоров Xeon, стоимость которых во много раз превышает стоимость процессоров Pentium II и Pentium III.
Тип разъема Slot A практически тот же самый Slot I, только перевернутый наоборот. Предназначен для установки процессора Athlon от AMD.