
- •6.1 Контрольные вопросы для зачёта по дисциплине:
- •Краткая история развития вт
- •Базовая структура машины Джона фон Неймана
- •Поколения эвм
- •Представление информации в эвм
- •2.2.2. Представление других видов информации
- •2.1. Системы счисления
- •2.1.1. Перевод целых чисел
- •2.1.2. Перевод дробных чисел
- •2.6. Прямой, обратный и дополнительный коды
- •2.6.1. Прямой код
- •2.6.2. Обратный код
- •2.6.3. Дополнительный код
- •2.6.8. Модифицированные коды
- •2.4.1.Основные сведения из алгебры логики
- •2.4.3. Понятие о минимизации логических функций
- •Диаграмма Вейча функции y
- •2.4.4. Техническая интерпретация логических функций
- •Диаграмма Вейча для функции f
- •Классификация элементов и узлов эвм
- •3.3. Схемы с памятью
- •Условия работы триггера
- •Диаграмма Вейча для таблицы переходов триггера
- •Общие принципы построения современных эвм
- •3.1. Операционные устройства (алу)
- •3.2. Управляющие устройства
- •3.2.1. Уу с жесткой логикой
- •3.2.2. Уу с хранимой в памяти логикой
- •3.2.2.1. Выборка и выполнение мк
- •3.2.2.3. Кодирование мк
- •3.2.2.4. Синхронизация мк
- •5.2.1. Структура базового микропроцессора
- •Характеристики микропроцессоров фирмы Intel
- •Структура микропроцессора
- •5.2.3. Взаимодействие элементов при работе микропроцессора
- •Структура памяти эвм
- •4.2. Способы организации памяти
- •4.2.1. Адресная память
- •4.2.2. Ассоциативная память
- •4.2.3. Стековая память (магазинная)
- •4.5. Постоянные зу (пзу, ппзу)
- •4.6. Флэш-память
- •5.1.2. Размещение информации в основной памяти ibm pc
- •Назначение, принцип работы и организация системы прерываний эвм
- •Возможные структуры систем прерывания
- •Характеристики систем прерывания
- •Принципы организации ввода / вывода информации в эвм
- •8.1. Общие принципы организации вв
- •8.2. Программный вв
- •8.3. Вв по прерываниям
- •8.4. Вв в режиме пдп
- •8.4.1. Пдп с захватом цикла
- •8.4.2. Пдп с блокировкой процессора
- •Интерфейсы периферийных устройств
- •Последовательный порт
- •Системы визуального отображения информации (видеосистемы)
- •.2. Клавиатура
- •7.3. Принтер
- •.4. Сканер
- •7.5. Анимационные устройства ввода-вывода
- •7.6. Устройства ввода-вывода звуковых сигналов
- •Глава 8. Внешние запоминающие устройства (взу)
- •8.1. Внешние запоминающие устройства на гибких магнитных дисках
- •Стандартные форматы нгмд ms dos
- •8.2. Накопитель на жестком магнитном диске
- •8.3. Стриммер
- •8.4. Оптические запоминающие устройства
- •Основные внешние устройства пк
- •Компоненты материнской платы
- •Разновидности слотов
- •Типы разъемов оперативной памяти
- •Разъемы для подключения внешних устройств
- •Разъемы для подключения дисковых устройств
- •Разъемы процессоров
- •Интерфейс
- •Шинная структура
- •Типы обмена по системной магистрали.
- •Магистраль процессора.
- •Формирование сигналов системной магистрали
- •Магистрально-модульный принцип построения компьютера
- •Принципы организации арбитража магистрали
- •Классификация мп
- •2 Типы микропроцессоров
- •3.7.3 Характеристики мп
- •Структура типового микропроцессора
- •Логическая структура микропроцессора
- •Типы архитектур
- •Микропроцессорные устройства.
- •1. Технология медной металлизации
- •2. Технология soi («кремний-на-изоляторе»)
- •3. Технология Low-k dielectric
- •4. SiGe: кремниево-германиевые микросхемы
- •5. Напряженный кремний
- •1.1. Общая структура микропроцессорной системы
- •Уровни представления микропроцессорной системы
- •1.2. Построение микропроцессорных систем с использованием различных микропроцессорных комплектов
- •1.3. Основные этапы разработки микропроцессорной системы
- •Лекция 13. Рабочие станции и серверы Классификация вычислительных систем. Персональные компьютеры и рабочие станции. X-терминалы. Cерверы. (6 ч.) Классификация вычислительных систем
- •Рабочая станция
- •Микроэвм
- •Классификация аппаратных средств вычислительных систем по ф.Г. Энслоу
- •1. С общей шиной.
- •2. С перекрестной коммутацией.
- •3 Мпвк с многовходовыми озу.
- •4. Ассоциативные вс.
- •5. Матричные системы.
- •6. Конвейерная обработка информации.
- •Признаки суперЭвм
- •Сферы применения суперкомпьютеров
- •Архитектура современных суперЭвм
- •Векторные суперкомпьютеры [simd]
- •Многопроцессорные векторные суперкомпьютеры (mimd)
- •Лекция 17. Проблемно-ориентированные эвм
- •Основы конфигурирования серверов баз данных
Типы разъемов оперативной памяти
На данный момент существует также несколько типов разъемов для установки оперативной памяти. Такие как: SIMM, DIMM, RIMM.
SIMM (Single In line Memory Module – модуль памяти с одним рядом контактов) – модуль памяти, вставляемый в зажимающий разъем. Помимо компьютера используется также во многих адаптерах, принтерах и прочих устройствах. SIMM имеет контакты с двух сторон модуля, но все они соединены между собой, образуя как бы один ряд контактов. Модули SIMM бывают двух видов (30 и 72 pin). Основное различие в количестве контактов на модуле. Но 30 pin'овые модули уже достаточно давно сняты с производства и вероятнее всего, вы их не встретите.
DIMM (Dual In line Memory Module – модуль памяти с двумя рядами контактов) – модуль памяти, похожий на SIMM, но с раздельными контактами (168 pin, т. е. 2 ряда по 84 pin). Контакты расположены с двух сторон, но гальванически разделены в отличие от SIMM модулей. За счет этого увеличивается разрядность или число банков памяти в модуле. Также применены разъемы другого типа, нежели для модулей SIMM.
CELP (Card Egde Low Profile – невысокая карта с ножевым разъемом на краю) – модуль внешней кэш-памяти, собранный на микросхемах SRAM (асинхронный) или PB SRAM (синхронный). По внешнему виду похож на 72-контактный SIMM, имеет емкость 256 или 512 Кбайт.
Разъемы для подключения внешних устройств
USB (Universal Serial Bus – универсальная последовательная магистраль) – один из современных интерфейсов для подключения внешних устройств. Предусматривает подключение до 127 внешних устройств к одному USB-каналу. Принципы построения USB аналогичны принципам построения общей шины. Аппаратные реализации обычно имеют по два канала на контроллер. Обмен по интерфейсу – пакетный, скорость обмена до 12 Мбит/с.
LPT (Line Printer) – первоначально был предназначен для подключения к нему принтера, но в дальнейшем появился ряд устройств, способных работать через LPT- порт (сканеры, Zip-приводы и т.д.). LPT-порт конструктивно представляет собой параллельный 8-разрядный порт плюс 4 разряда состояния.
Режимы работы параллельного LPT порта
SPP (Standard Parallel Port – стандартный параллельный порт) осуществляет 8-разрядный вывод данных с синхронизацией по опросу или по прерываниям. Максимальная скорость вывода – около 80 Кбайт/с. Может использоваться для ввода информации по линиям состояния. Максимальная скорость ввода – примерно вдвое меньше.
EPP (Enhanced Parallel Port – расширенный параллельный порт) – скоростной двунаправленный вариант интерфейса. Изменено назначение некоторых сигналов. Введена возможность адресации нескольких логических устройств и 8-разрядного ввода данных. Используется 16-байтовый аппаратный FIFO-буфер. Максимальная скорость обмена – до 2 Мбайт/с.
ECP (Enhanced Capability Port – порт с расширенными возможностями) – интеллектуальный вариант EPP. Реализованы возможность разделения передаваемой информации на команды и данные, а также поддержка DMA и сжатия передаваемых данных методом RLE (Run-Length Encoding – кодирование повторяющихся серий).
COM порт – последовательный порт. Скорость обмена до 115 Кбит/с. Возможно подключение лишь одного устройства к порту. В основном используется для подключения манипулятора типа «мышь» или модема. Стандартно в материнскую плату встроено два последовательных порта.
PS/2 порт – последовательный порт. Является функциональным аналогом COM- порта, но имеет дополнительно линии для питания подключаемых устройств. Служит для подключения клавиатуры или манипулятора типа «мышь».