
- •6.1 Контрольные вопросы для зачёта по дисциплине:
- •Краткая история развития вт
- •Базовая структура машины Джона фон Неймана
- •Поколения эвм
- •Представление информации в эвм
- •2.2.2. Представление других видов информации
- •2.1. Системы счисления
- •2.1.1. Перевод целых чисел
- •2.1.2. Перевод дробных чисел
- •2.6. Прямой, обратный и дополнительный коды
- •2.6.1. Прямой код
- •2.6.2. Обратный код
- •2.6.3. Дополнительный код
- •2.6.8. Модифицированные коды
- •2.4.1.Основные сведения из алгебры логики
- •2.4.3. Понятие о минимизации логических функций
- •Диаграмма Вейча функции y
- •2.4.4. Техническая интерпретация логических функций
- •Диаграмма Вейча для функции f
- •Классификация элементов и узлов эвм
- •3.3. Схемы с памятью
- •Условия работы триггера
- •Диаграмма Вейча для таблицы переходов триггера
- •Общие принципы построения современных эвм
- •3.1. Операционные устройства (алу)
- •3.2. Управляющие устройства
- •3.2.1. Уу с жесткой логикой
- •3.2.2. Уу с хранимой в памяти логикой
- •3.2.2.1. Выборка и выполнение мк
- •3.2.2.3. Кодирование мк
- •3.2.2.4. Синхронизация мк
- •5.2.1. Структура базового микропроцессора
- •Характеристики микропроцессоров фирмы Intel
- •Структура микропроцессора
- •5.2.3. Взаимодействие элементов при работе микропроцессора
- •Структура памяти эвм
- •4.2. Способы организации памяти
- •4.2.1. Адресная память
- •4.2.2. Ассоциативная память
- •4.2.3. Стековая память (магазинная)
- •4.5. Постоянные зу (пзу, ппзу)
- •4.6. Флэш-память
- •5.1.2. Размещение информации в основной памяти ibm pc
- •Назначение, принцип работы и организация системы прерываний эвм
- •Возможные структуры систем прерывания
- •Характеристики систем прерывания
- •Принципы организации ввода / вывода информации в эвм
- •8.1. Общие принципы организации вв
- •8.2. Программный вв
- •8.3. Вв по прерываниям
- •8.4. Вв в режиме пдп
- •8.4.1. Пдп с захватом цикла
- •8.4.2. Пдп с блокировкой процессора
- •Интерфейсы периферийных устройств
- •Последовательный порт
- •Системы визуального отображения информации (видеосистемы)
- •.2. Клавиатура
- •7.3. Принтер
- •.4. Сканер
- •7.5. Анимационные устройства ввода-вывода
- •7.6. Устройства ввода-вывода звуковых сигналов
- •Глава 8. Внешние запоминающие устройства (взу)
- •8.1. Внешние запоминающие устройства на гибких магнитных дисках
- •Стандартные форматы нгмд ms dos
- •8.2. Накопитель на жестком магнитном диске
- •8.3. Стриммер
- •8.4. Оптические запоминающие устройства
- •Основные внешние устройства пк
- •Компоненты материнской платы
- •Разновидности слотов
- •Типы разъемов оперативной памяти
- •Разъемы для подключения внешних устройств
- •Разъемы для подключения дисковых устройств
- •Разъемы процессоров
- •Интерфейс
- •Шинная структура
- •Типы обмена по системной магистрали.
- •Магистраль процессора.
- •Формирование сигналов системной магистрали
- •Магистрально-модульный принцип построения компьютера
- •Принципы организации арбитража магистрали
- •Классификация мп
- •2 Типы микропроцессоров
- •3.7.3 Характеристики мп
- •Структура типового микропроцессора
- •Логическая структура микропроцессора
- •Типы архитектур
- •Микропроцессорные устройства.
- •1. Технология медной металлизации
- •2. Технология soi («кремний-на-изоляторе»)
- •3. Технология Low-k dielectric
- •4. SiGe: кремниево-германиевые микросхемы
- •5. Напряженный кремний
- •1.1. Общая структура микропроцессорной системы
- •Уровни представления микропроцессорной системы
- •1.2. Построение микропроцессорных систем с использованием различных микропроцессорных комплектов
- •1.3. Основные этапы разработки микропроцессорной системы
- •Лекция 13. Рабочие станции и серверы Классификация вычислительных систем. Персональные компьютеры и рабочие станции. X-терминалы. Cерверы. (6 ч.) Классификация вычислительных систем
- •Рабочая станция
- •Микроэвм
- •Классификация аппаратных средств вычислительных систем по ф.Г. Энслоу
- •1. С общей шиной.
- •2. С перекрестной коммутацией.
- •3 Мпвк с многовходовыми озу.
- •4. Ассоциативные вс.
- •5. Матричные системы.
- •6. Конвейерная обработка информации.
- •Признаки суперЭвм
- •Сферы применения суперкомпьютеров
- •Архитектура современных суперЭвм
- •Векторные суперкомпьютеры [simd]
- •Многопроцессорные векторные суперкомпьютеры (mimd)
- •Лекция 17. Проблемно-ориентированные эвм
- •Основы конфигурирования серверов баз данных
.2. Клавиатура
Клавиатура - это одно из основных устройств ввода информации в ЭВМ, позволяющее вводить различные виды информации. Вид вводимой информации определяется программой, интерпретирующей нажатые или отпущенные клавиши. С помощью клавиатуры можно вводить любые символы - от букв и цифр до иероглифов и знаков музыкальной нотации. Клавиатура позволяет управлять курсором на экране дисплея -устанавливать его в нужную точку экрана, перемещать по экрану, “прокручивать” экран в режиме скроллинга, отправлять содержимое экрана на принтер, производить выбор при наличии альтернативных вариантов и т.д.
Общее число клавиш в основной модификации клавиатуры - 83, в расширенной клавиатуре - до 101.
Сигналы, поступающие от клавиатуры, проходят трехуровневую обработку: на физическом, на логическом и на функциональном уровнях.
Физический уровень имеет дело с сигналами, поступающими в вычислительную машину при нажатии и отпускании клавиш.
На логическом уровне, реализуемом BIOS через прерывание 9, скан-код транслируется в специальный 2-байтовый код. Младший байт для клавиш группы 1 содержит ASCII-код, соответствующий изображенному на клавише знаку. Этот байт называют главным. Старший байт (вспомогательный) содержит исходный скан-код нажатой клавиши.
На функциональном уровне отдельным клавишам программным путем приписываются определенные функции. Такое “программирование” клавиш осуществляется с помощью драйвера-программы, обслуживающей клавиатуру в операционной системе.
На IBM PC AT используется клавиатура с большим количеством клавиш. На этих машинах есть возможность управлять некоторыми функциями клавиатуры, например, изменять время ожидания автоповтора, частоту автоповтора, зажигать и гасить светодиоды на панели управления клавиатурой.
Устройство клавиатуры не является простым: в клавиатуре используется свой микропроцессор, работающий по прошитой в ПЗУ программе. Контроллер клавиатуры постоянно опрашивает клавиши, определяет, какие из них нажаты, проводит контроль на “дребезг” и выдает код нажатой или отпущенной клавиши в системный блок ЭВМ.
7.3. Принтер
Принтер - это внешнее устройство ЭВМ, предназначенное для вывода информации на твердый носитель в символьном или графическом виде.
Классификация принтеров может быть проведена по следующим критериям: по способу вывода, по принципу формирования изображения, по способу регистрации и по принципу управления процессом печати.
Поспособу вывода изображения принтеры делятся на две группы: символьные и графические. Символьные принтеры могут выводить информацию в виде отдельных символов по мере их поступления в печатающее устройство (ПУ). При этом за один цикл печати формируется один знак (посимвольные ПУ). В построчных ПУ вывод на печать осуществляется только после заполнения буферного ЗУ, которое по емкости равно одной строке. Постраничные ПУ за один цикл печати формируют и распечатывают целую страницу.
Графические печатающие устройства выводят информацию не целыми символами, а отдельными точками или линиями. Количество точек на единицу длины определяет разрешающую способность принтера, которая имеет разную величину в зависимости от направления: по горизонтали и по вертикали. В принтерах этого типа каждая точка имеет свои координаты, которые являются адресом этой точки.
Попринципу формирования выводимого изображения ПУ делятся на три вида: литерные, матричные и координатные (векторные).
Литерные устройства выводят информацию в виде символов, каждый из которых является графическим примитивом данного устройства. Литеры сформированы при изготовлении принтера, нанесены на специальные рычаги или литерные колеса-шрифтоносители и при эксплуатации принтера без замены шрифтоносителя не изменяются.
Матричные ПУ выводят информацию в виде символов, сформированных из отдельных точек, объединенных в символьную матрицу. Печатающая головка матричного принтера имеет вертикальный ряд иголок, каждая из которых может сделать оттиск самого маленького элемента изображения - пиксела (точки). Печать символа происходит при перемещении головки по горизонтали. Если подлежащий печати символ имеет размеры большие, чем может обеспечить печатающая головка, такой символ печатается за несколько проходов, после каждого из которых осуществляется перемещение по вертикали (относительно печатающей головки) носителя изображения (например, бумаги).
Одной из наиболее существенных характеристик матричного принтера является количество иголок, с помощью которых формируется изображение. В печатающей головке принтера могут находиться 9,18 или 24 иголки, которые располагаются вертикально в 1-2 ряда. От количества иголок, их расположения и размера зависят качество и скорость печати. Качество печати регулируется переключением режима: Draft (черновая печать за один проход), LQ (чистовая печать), NLQ (получистовая печать) и определяет скорость печати (количество знаков в секунду) и разрешающую способность (количество точек, печатаемых на одном дюйме). Обычно матричные принтеры имеют диаметр иголки около 0.2 мм, скорость печати от 180 до 400 символов в секунду (в режиме Draft), разрешение 360 х 360 точек на дюйм.
Координатные ПУ - плоттеры, графопостроители - выводят информацию как текстовую, так и графическую либо в виде отдельно адресуемых точек, либо сформированную из различных линий - так называемое “штриховое” изображение. При решении экономических задач координатные ПУ используются редко.
Поспособу регистрации изображения ПУ делятся на ударные и безударные.
ПУ ударного действия формируют изображение на бумаге, сжимая с помощью удара на короткий промежуток времени рельефное изображение символа или его части, красящей ленты и бумаги. Иногда краска наносится на поверхность литеры, красящая лента в этом случае отсутствует.
Существуют принтеры, использующие ударочувствительную бумагу, цвет которой изменяется за счет механического воздействия на нее без дополнительного нанесения краски.
ПУ безударного действия характеризуются тем, что изображение на бумагу наносится через промежуточный носитель, чувствительный к электрическому воздействию, электростатическому полю, магнитному полю, и др. Обычно промежуточный носитель исполняется в виде барабана. Изображение на него наносится лазерным лучом, с помощью магнитных головок и др. Затем изображение на промежуточном носителе проявляется - на поверхность барабана наносится смесь сухого красителя с порошком, “прилипающим” к зафиксированному на барабане изображению (например, если изображение наносилось на барабан магнитным полем, в качестве порошка используются мелкие металлические опилки). После этого к барабану “прикатывается” чистый лист бумаги, на который переносится краситель с барабана. Лист с накатанным на него красителем подвергается термообработке - нагревается до расплавления красителя, который в жидком виде проникает в поры бумаги и хорошо закрепляется на ней. После расплавления красителя отдельные точки сливаются в единое целое, поэтому качество изображения получается высоким. Разрешающая способность таких принтеров очень высока. Например, лазерные принтеры Lazerjet III и Lazerjet IV обеспечивают 300-600 точек на дюйм. Скорость печати у лазерных принтеров измеряется количеством страниц в минуту и составляет 4-12 стр/мин при монохромной печати и 2-6 стр/мин при цветной печати.
К ПУ безударного действия также относятся термические принтеры, использующие термочувствительную бумагу, которая изменяет свой цвет под действием тепловых лучей, и струйные принтеры, у которых жидкий краситель (чернила) находится в печатающей головке. Головка имеет отверстия, через которые краситель не может вылиться из-за сил поверхностного натяжения. Внутри головки находится терморезистор, который при подаче на него импульса тока разогревает краситель, увеличивая его испарение. Пары красителя проникают через отверстие в головке и попадают на бумагу в виде капли. Благодаря тому что головка может работать с несколькими красителями, выпускаются и цветные струйные принтеры. Длительностью нагрева терморезистора можно регулировать количество выбрасываемых чернил, а следовательно, размеры и яркость точки. Разрешающая способность струйных принтеров составляет от 360 до 720 точек на дюйм. Скорость печати 4-10 страниц в минуту. Печатающая головка струйного принтера содержит от 48 до 416 отверстий (сопел).
Несмотря на большое разнообразие типов принтеров, различия принципов управления печатью касаются в основном способов знакогенерации. Матричный принтер, а также большинство принтеров безударного действия формируют изображение из отдельных точек, образующих символьную матрицу.
Обычно кодовые комбинации, характеризующие форму символов на матрице, образует матричный шрифт (фонт), который заносится в запоминающее устройство знакогенератора.
Каждый шрифт (фонт) представляет собой комплект букв, цифр и специальных символов, оформленных в соответствии с едиными требованиями.
Альтернативой матричной является векторная знакогенерация. Векторные шрифты строятся на базе математического описания формы символа. Для векторной знакогенерации характерна легкость изменения формы, размеров, наклона шрифта, поэтому они называются свободно масштабируемыми шрифтами. Генерация шрифтов и управление процессом вывода изображения производятся для векторных шрифтов на специальном языке (PCL, PostScript).
При использовании векторных шрифтов математическое описание формы каждого символа ;с учетом его размеров и стиля преобразуется перед печатью в матричную форму в соответствии с конкретными "размерами матрицы принтера. Поэтому форма шрифта, выводимого на различные устройства, остается примерно постоянной, не зависящей от расстояний между точками и размеров символов. Для такого преобразования в состав печатающих устройств включаются вычислительные устройства - ускорители, в качестве которых нашли применение матричные процессоры, транспьютеры. Это накладывает серьезный отпечаток на архитектуру системы управления принтером.