
- •Министерство образования российской федерации
- •Кафедра неорганической и аналитической химии Дистанционное
- •Н.Н. Роева, е.М. Голик, т.Т. Канищева,
- •Н.А. Караванов, з.И. Кочергина.
- •Неорганическая химия
- •Учебно–практическое пособие для студентов
- •Технологических специальностей всех форм обучения
- •Содержание
- •Тренировочные задания………………………………………………………….9 Тесты по теме……………………………………..........................................….. 9
- •Тесты по теме…………………………………………………………………… 15
- •Тесты по теме…………………………………………………………………… 23
- •1. Периодическая система и строение атомов элементов.
- •1.1. Атомная орбиталь и квантовые числа
- •Орбитальное квантовое число и форма ао.
- •1.2. Заселение ао в многоэлектронном атоме.
- •1.3.Электронные формулы
- •Примеры составления электронных формул атомов. Элементы главных подгрупп псэ
- •Элементы побочных подгрупп псэ
- •22Ti 1s22s22p63s2 3p6 3d24s2 iy период 4 группа
- •39Y 1s22s22p63s2 3p6 3d104s24p64d15s2 y период 3 группа
- •1.4. Периодические свойства элементов.
- •Тесты по теме
- •2. Химическая связь: ионная, ковалентная, координационная,
- •2.1. Типы химической связи
- •2.2. Методы расчета систем с ковалентной связью.
- •2.2.2Метод молекулярных орбиталей (мо).
- •2.3. Пространственная структура молекул с ковалентной связью.
- •2.4. Взаимодействие между молекулами.
- •2.4.2. Донорно-акцепторное взаимодействие молекул.
- •2.5. Строение вещества в конденсированном состоянии.
- •Одна -связь.
- •3. Скорость химических реакций.
- •Химическое равновесие
- •Тренировочные задания
- •4.Растворы
- •4.1. Способы выражения концентраций растворов.
- •4.2.Идеальные, неидеальные растворы. Активность.
- •4.3. Протолитическое равновесие.
- •4.5.Слабые электролиты и константы их диссоциации. Произведение растворимости.
- •4.6. Гидролиз солей.
- •Соли, подвергающиеся необратимому гидролизу, и продукты реакции.
- •5.Окислительно-восстановительные (о/в) реакции.
- •5.1 Основные понятия
- •5.3.Определение продуктов о/в реакций.
- •5.4.Электронно-ионный метод составления баланса о/в реакций.
- •5.5.Самопроизвольное протекание о/в реакций.
- •5.6.Взаимодействие металлов с кислотами-окислителями.
- •6.Химия элементов.
- •6.2.Берилий, магний, щелочно-земельные металлы.
- •6.3.Бор, алюминий, галий, индий, талий.
- •6.4.Углерод, кремний, германий, олово, свинец.
- •6.5Азот, фосфор, мышьяк, сурьма, висмут.
- •6.6.Кислород, сера, селен, теллур.
- •6.7.Галогены.
- •6.8.Благородные газы.
- •6.9.Медь, серебро, золото.
- •6.10.Цинк, кадмий, ртуть.
- •6.11.Титан, цирконий, гафний, ванадий, ниобий, тантал.
- •6.12.Хром, молибден, вольфрам.
- •6.13.Марганец, технеций, рений.
- •6.14.Между рядами больших периодов включаются элементы 8b группы, объединенные в триады. Железо, кобальт, никель.
- •Тренировочные занятия.
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6
- •Вопросы к экзамену.
5.Окислительно-восстановительные (о/в) реакции.
5.1 Основные понятия
О/в реакции – реакции, идущие с переносом электронов. В результате реакции изменяется степень окисления окислителя и восстановителя..
Степень окисления (СО) – условный заряд, который приобрел бы атом, если все связи в нем были ионные. Вычисляется исходя из постулатов:
молекула нейтральна, ее СО равна нулю;
СО водорода (в большинстве соединений) и щелочных металлов (Li – Fr) равна +1, металлов основной подгруппы 2 группы (Ве – Mg) равна +2;
СО кислорода (в большинстве соединений) равна –2.
В качестве примера определим СО марганца в перманганате калия (КMnO4). Сумма отрицательных зарядов на кислороде равна +8 [(+2) 4]. Так как СО молекулы равна 0; сумма положительных зарядов должна быть равна -8; из них СО К+ равна +1. Следовательно, СО марганца равна +7.
Окислитель – элемент, принимающий электроны. При этом он восстанавливается. Его СО понижается. Например, Mn+7 + 5e = Mn2+
Восстановитель отдает электроны. При этом он окисляется. Его СО повышается. Например, Mn 2+ – 2e = Mn4+.
Для понимания связи о/в свойств элемента и его соединений с положением элемента в ПСЭ, рассмотрим следующие понятия:
высшая степень окисления (больше которой не может быть) численно равна номеру группы, в которой находится элемент в ПСЭ. В высшей СО все элементы – только окислители, могут только принимать электроны.
Например, высшая СО серы равна + 6;
низшая степень окисления (меньше которой не может быть) для металлов равна нулю; для неметаллов численно равна номеру группы, в которой находится элемент в ПСЭ, минус восемь. Например, низшая СО серы равна –2 (H2S), магния равна 0;
промежуточная степень окисления – СО, находящаяся между низшей и высшей СО элемента. В промежуточной СО элементы могут проявлять как окислительные, так и восстановительные свойства, в зависимости от партнера по реакции. Например, промежуточная СО на сере в сернистой кислоте (H2SO3) и SO2 - оксиде серы (IV), равна +4, поэтому сернистая кислота в реакции с H2S – окислитель, а в реакции с КMnO4 – восстановитель
5.2.Типы о/в реакций
Для понимания процесса протекания о/в реакций рассмотрим различные типы о/в реакций.
межмолекулярные реакции – реакции, в которых окислитель и восстановитель находятся в разных молекулах, например, КMnO4 + H2S
внутримолекулярные – реакции, в которых окислитель и восстановитель находятся внутри одной и той же молекулы. Например, в молекуле
(NH4)2 Cr2О7: N-3 – восстановитель, Сr6+ - окислитель;
самоокисления – самовосстановления (диспропорционирования) –окислитель и восстановитель один и тот же элемент, находящийся в промежуточной СО. Он сам себя окисляет и восстанавливает.
5.3.Определение продуктов о/в реакций.
В межмолекулярных и внутримолекулярных о/в реакциях сначала определяют окислитель и восстановитель. Затем, исходя из их возможных СО, определяют возможные продукты реакции, помня о том, что окислитель понижает СО, а восстановитель ее повышает. Например, в реакции между оксидом свинца (IV) и иодидом калия (в сернокислой среде): PbO2 – окислитель (свинец находится в 4 группе ПСЭ, Pb+4 – высшая СО свинца). Понижая свою СО, свинец может превратиться в Pb+2; KI - восстановитель ( йод – элемент 7 группы ПСЭ, I1- - низшая CО йода). Повышая свою СО, йод может превратиться в I20. Напомним, что молекула йода, как и других галогенов, состоит из двух атомов.
Cхема реакции:
PbO2 + KI + Н2SO4 = PbSO4 + I20 + K2SO4 + Н2О,
K2SO4 + Н2О – продукты реакции обмена.
Следует помнить, что для амфотерных элементов (оксиды и гидроксиды которых – амфотерны), вид получаемого продукта зависит также и от реакции среды: Pb2+ в сернокислой среде существует в виде PbSO4, в щелочной среде (КОН) – в виде К2РbO2, т.к.
Pb(OH)2 + Н2SO4 = PbSO4 + Н2О
Pb(OH)2 + 2КОН = К2РbO2+ 2Н2О
Для амфотерных элементов, имеющих много различных СО, например,
для марганца, в зависимости от среды получаются продукты с различными СО. Больше всего СО изменяется в кислой среде, меньше всего – в щелочной. Например, в кислой среде Mn+7 + 5e = Mn2+,
в нейтральной Mn+7 + 3е = Mn4+
в щелочной среде Mn+7 + 1е = Mn+6
В реакциях диспропорционирования элемент, находящийся в промежуточной СО, может сам себя окислять и сам себя восстанавливать, вступая в реакции самоокисления – самовосстановления. При этом (если реакция проводится без нагревания) получаются продукты реакции со СО, ближайшими к исходному, например:
Cl2 + H2O = HCl + HClO