Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
аналка шпора.doc
Скачиваний:
16
Добавлен:
16.04.2019
Размер:
2.39 Mб
Скачать

60. Пучок плостей

О: Множество всех плоскостей проходящей через фиксированную прамую «Л» назыв.пучком плоскостей

Т: Если а1х+в1у+с1з+д1=0 и а2х+в2у+с2з+д2=0 ур-я 2-ух различных плоскостей пересекающиеся по прямой «Л», а α иβ действительные числа одноврем. не равны 0, то ур-е вида:

α(а1х+в1у+с1з+д1)+β(а2х+в2у+с2з+д2)=0(*) опред.плоск.проходящюю через прямую «Л» .

обратно: Люб.плоск.проход через прям. «Л» опред. этим ур-ем при подходящих знач. α и β.

Док-во: Ч1) рас-м и преоб-ем ур-е (*) к след.виду: (αа1+ β а2)х+(αв1+ βв2 )у+(αс1+ βс2 )з+(αд1+ βд2 ) =0. Пок-м, что корд-ты одноврм.не =0 при х,у,з.

61. Связка плоскостей

О: множество всех плоскостей проходящей через одну и туже (.) М0 назыв. связкой плоскостей с центром в (.) М0

Т: Уровнение связки плоскостей с центром в (.) М0 с коордионатоми М0(х0,у0,з0) имеют вид: а(х-х0)+в(у-у0)+с(з-з0)=0, где а,в,с одновременно не=0.

62. Общие ур-я прямой в пространстве

О:Прямую линию в пространстве рассматривают как линию пересечения двух различных плоскостей. любая плоскость задается общим ур-ем т.к прямая лежит в двух плоскостях, то ее коордионаты удвл. ур-ям каждой плоскости содерж. прямую. Если а1х+в1у+с1з+д1=0 (1) и а2х+в2у+с2з+д2=0 (2) то прямая по которой эти плоскости пересекаются задается системой ур-й плоскостей система, где кооэф-ты соответст.не пропорциональны. Такая система назыв. общ.ур-ем прямой в пространстве

63. Канонические ур-я прямой в пространстве

О: Любой не нулевой вектор парал-ый данной прямой называется направляющим вектором.

Составим ур-е прямой проходящую через (.) М0(х0,у0,з0) ІІ напрвл.вектору =(л,м,п) . пусть М(х,у,з) произвольная (.) данной прямой. Рас-м вектор =(х-х0;у-у0;з-з0).В-ры ІІ . поэтому их соответств. корд. пропорц-ы , т.е: получили каноническое ур-е прямой в пространстве.

Легко получить ур-е прямой по 2-м ее (.). (.) А(х1,у1,з1) и (.) В(х2,у2,з2). век-р АВ=(х2-х1;у2-у1;з2-з1).

64. Параметрические ур-я прямой в пространстве

Возьмем произвольное каноническое ур-е прямой: где Т принимает люб.знач и назыв параметром. Если Т придать конкретное значение, то из парам-го ур-я получается корд-ты опред.(.) прямой

65. Приведение общих уравнений к каноническому виду

Пусть дано общ.ур-е вида: а1х+в1у+с1з+д1=0 а2х+в2у+с2з+д2=0 чтобы записать каноническое ур-е надо знать фиксированную (.) данной прямой для этого одну из прямых х,у,з дают конкретное значение например:з=0, или у=0 .Подстовляют это значение в систему и находят значения оставшихся переменных х иу. в результате получаются коордионаты конкретной (.) прямой . Обозначим м0(х0,у0,з0) для кононического ур-я прямой нетрудно заметить , что в качестве направ. вектора равный векторному произведению нормальных век-в соответствющих плоскостей, т.е: = , коордионаты находятся по фор-ле и записываем канонич. ур-е

66.Уравнение прямой по 2-м ее (.)

О: Любой не нулевой вектор парал-ый данной прямой называется направляющим вектором.

Составим ур-е прямой проходящую через (.) М0(х0,у0,з0) ІІ напрвл.вектору =(л,м,п) . пусть М(х,у,з) произвольная (.) данной прямой. Рас-м вектор =(х-х0;у-у0;з-з0).В-ры ІІ . поэтому их соответств. корд. пропорц-ы , т.е: получили каноническое ур-е прямой в пространстве.

Легко получить ур-е прямой по 2-м ее (.). (.) А(х1,у1,з1) и (.) В(х2,у2,з2). век-р АВ=(х2-х1;у2-у1;з2-з1).