Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МАТАН!!!.docx
Скачиваний:
4
Добавлен:
16.04.2019
Размер:
1.33 Mб
Скачать

Геометрический смысл производной

Рассмотрим график функции y = f(x), определенной и непрерывной на (a,b). Зафиксируем произвольную точку x на (a,b), и зададим приращение D x№ 0, причем x+D x О (a,b). Пусть точки M,P - точки на графике f(x), абсциссы которых равны x, x+D x (рис.21). Координаты точек M и P имеют вид M(x,f(x)), P(x+D x,f(x+D x). Прямую, проходящую через точки M, P графика функции f(x) будем называть секущей. Обозначим угол наклона секущей MP к оси ОX через f (D x).

Определение 3. Если существует предельное положение секущей MP при стремлении точки N к точке M вдоль графика функции при D x® 0), то это предельное положение называется касательной к графику функции f(x) в данной точке M этого графика.

Из данного определения следует, что для существования касательной к графику f(x) в точке M достаточно, чтобы существовал предел limD x® 0f (D x) = f 0, который равен углу, образованному касательной с положительным направлением оси OX.

Справедливо утверждение:

Предложение 1. Если f(x) имеет в данной точке x производную, то существует касательная к графику функции f(x) в точке M( x,f(x)) , причем угловой коэффициент этой касательной равен производной f'(x).

Из этого утверждения вытекает геометрический смысл производной: производная f'(x0) есть угловой коэффициент касательной, проведенной к кривой y = f(x) в точке x0, который в свою очередь равен tg угла наклона касательной к графику функции.

Тогда уравнение касательной к кривой f(x) в точке x0 имеет вид

y = f(x0)+f'(x0)(x-x0)

Геометрический смысл дифференциала

Р ассмотрим функцию y=f(x) и соответствующую ей кривую. Возьмем на кривой произвольную точку M(x; y), проведем касательную к кривой в этой точке и обозначим через α угол, который касательная образует с положительным направлением оси Ox. Дадим независимой переменной x приращение Δx, тогда функция получит приращение Δy = NM1. Значениям xx и yy на кривой y = f(x) будет соответствовать точка

M1(xx; yy).

Из ΔMNT находим NT=MN·tg α. Т.к. tg α = f '(x), а MN = Δx, то NT = f '(x)·Δx. Но по определению дифференциала dy=f '(x)·Δx, поэтому dy = NT.

Таким образом, дифференциал функции f(x), соответствующей данным значениям x и Δx, равен приращению ординаты касательной к кривой y=f(x) в данной точке х.

36. Производные основных элементарных функций.

  1. y = xn. Если n – целое положительное число, то, используя формулу бинома Ньютона:

(a + b)n = an+n·an-1·b + 1/2∙n(n – 1)an-2b2+ 1/(2∙3)∙n(n – 1)(n – 2)an-3b3+…+ bn,

можно доказать, что

Итак, если x получает приращение Δx, то f(xx) = (x + Δx)n, и, следовательно,

Δy=(xx)nxn =n·xn-1·Δx + 1/2·n·(n–1)·xn-2·Δx2 +…+Δxn.

Заметим, что в каждом из пропущенных слагаемых есть множитель Δx в степени выше 3.

Найдем предел

Мы доказали эту формулу для n Î N. Далее увидим, что она справедлива и при любом n Î R.

  1. y= sin x. Вновь воспользуемся определением производной.

Так как, f(xx)=sin(xx), то

Таким образом,

  1. Аналогично можно показать, что

  2. Рассмотрим функцию y= ln x.

Имеем f(xx)=ln(xx). Поэтому

Итак,