Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
biohimia.doc
Скачиваний:
7
Добавлен:
14.04.2019
Размер:
1.63 Mб
Скачать

4 Билет

Эластин – основной белковый компонент, из которого состоят эластические волокна. Он отличается от коллагена по химическому составу и молекулярной структуре. Общими для эластина и коллагена являются большое содержание глицина и пролина, наличие оксипролина, хотя последнего в эластине примерно в 10 раз меньше, чем в коллагене. Как и в коллагене, в эластине мало метионина и отсутствуют триптофан и цистеин. в отличие от коллагена в эластине значительно больше валина и ала-нина и меньше глутаминовой кислоты и аргинина. В целом характерной особенностью первичной структуры эластина является слишком малое содержание полярных аминокислотных остатков. При ферментативном гидролизе эластина в гидролизате обнаруживаются десмозин и изодесмо-зин. Эти соединения содержатся только в эластине. Структура их довольно необычна: 4 остатка лизина, соединяясь своими радикалами, образуют замещенное пиридиновое кольцо. Эластин вместе с коллагеном, протеогликанами и рядом глико- и муко-протеинов является продуктом биосинтетической деятельности фиброблас-тов. Непосредственным продуктом клеточного биосинтеза считается не эластин, а его предшественник – тропоэластин (в коллагене – проколлаген). Тропоэластин не содержит поперечных связей, обладает растворимостью. В последующем тропоэластин превращается в зрелый эластин, нерастворимый, содержащий большое количество поперечных связей .

МИОГЛОБИН (от греч. mys, род. падеж myos- мышца и лат. globus-шар), белок мышц позвоночных животных и человека, связывающий переносимый гемоглобином О2 и передающий его окислит. системам клетки. Состоит из одной полипептидной цепи, содержащей 153 аминокислотных остатка (мол. м. 17800), к-рая уложена в плотную глобулу размером 4,5 х 2,5 нм. В спец. полости миоглобина ("кармане") помещается гем, к-рый связан с остальной частью молекулы (глобином), как в гемоглобине. Ок. 75% полипептидной цепи находится в конформации a-спирали (все a-спирали правозакрученные). Между областями спи-рализации находятся 5 неспирализованных участков; такие же участки находятся на концах цепи. Внутр. область молекулы состоит гл. обр. из неполярных остатков лейцина, валина, метионина, фенилаланина и не содержит боковых полярных цепей глутаминовой и аспарагиновой к-т, глута-мина, аспарагина, лизина и аргинина. На наружной стороне молекулы расположены как полярные, так и неполярные аминокислотные остатки.

ГЕМОГЛОБИН (от греч. haima- кровь и лат. globus-шар), осн. белок дыхат. цикла, участвующий в переносе О2 от органов дыхания к тканям, а в обратном направлении - СО2. Содержится в эритроцитах крови почти всех позвоночных и гемолимфе большинства беспозвоночных животных. Гемоглобин позвоночных (мол. м. 6,4*104-6,6*104) состоят из четырех попарно идентичных субъединиц (их обозначают греч. буквами; теми же буквами обозначают входящие в состав субъединиц полипептидные цепи, а также гены, кодирующие эти цепи). Каждая субъединица имеет белковую глобиновую часть, состоящую из 140-160 аминокислотных остатков, с к-рой нековалентно связан гем-ферропрото-порфирин. Гемоглобин взрослого человека (НbА) имеет мол. м. 6,49*104 и принадлежит к числу наиб. изученных белков. Его форма в р-ре близка к эллипсоиду с осями 6,4, 5,5 и 5,0 нм; изоэлектрич. точка 6,9. Тетрамер НЬА состоит из двух и двухсубъединиц, их полипептидные цепи содержат соотв. 141 и 146 аминокислотных остатков. Известны первичная структура обеих цепей, а также пространств. структура оксигенированной, дезоксигенированной, ряда лигандированных, а также окисленной формы (содержит Fe3 +) НbА. Пространств. структура субъединиц (рис. 1) характеризуется наличием восьмиспиральных участков, включающих около 80% аминокислотных остатков, и внутр. полости -гемового кармана. Фиксирование тема в субъединице осуществляется в результате гидрофобных взаимод. пиррольных и винильных групп тема с алифатич. и ароматич. боковыми радикалами аминокислот, выстилающими полость кармана, а также благодаря координационной связи (направлена перпендикулярно к плоскости кольца тема) Fe2+ с аксиальным лигандом-имидазольной группой гистидина (т. наз. проксимальный гистидин). При оксигенации молекула О2 занимает шестое.

Билет 5

Состояние белкового обмена целостного организма зависит не только от количества принимаемого с пищей белка, но и от качественного состава его. В опытах на животных было показано, что получение одинакового количества разных пищевых белков сопровождается в ряде случаев развитием отрицательного азотистого баланса. Так, скармливание равного количества казеина и желатина крысам приводило к положительному азотистому балансу в первом случае и к отрицательному – во втором . Имел значение различный аминокислотный состав белков, что послужило основанием для предположения о существовании в природе якобы «неполноценных» белков. Оказалось, что из 20 аминокислот в желатине почти отсутствуют (или содержатся в малых количествах) валин, тирозин, метионин и цистеин; кроме того, желатин характеризуется другим, отличным от казеина процентным содержанием отдельных аминокислот. Этим можно объяснить тот факт, что замена в питании крыс казеина на желатин приводит к развитию отрицательного азотистого баланса. Приведенные данные свидетельствуют о том, что различные белки обладают неодинаковой пищевой ценностью. Поэтому для удовлетворения пластических потребностей организма требуются достаточные количества разных белков пищи. По-видимому, справедливо положение, что, чем ближе аминокислотный состав принимаемого пищевого белка к аминокислотному составу белков тела, тем выше его биологическая ценность. Следует, однако, отметить, что степень усвоения пищевого белка зависит также от эффективности его распада под влиянием ферментов желудочно-кишечного тракта. Ряд белковых веществ (например, белки шерсти, волос, перьев и др.), несмотря на их близкий аминокислотный состав к белкам тела человека, почти не используются в качестве пищевого белка, поскольку они не гидролизуются протеиназами кишечника человека и большинства животных.

Биологическая ценность пищевого белка целиком зависит от степени его усвоения организмом, что в свою очередь определяется соответствием между аминокислотным составом потребляемого белка и аминокислотным составом белков организма. Такой пищевой белок лучше используется организмом для синтеза белков тканей. Для человека, например, белки мяса, молока, яиц биологически более ценны, поскольку их аминокислотный состав ближе к аминокислотному составу органов и тканей человека. Однако это не исключает приема растительных белков, в которых содержится необходимый набор аминокислот, но в другом соотношении. Поэтому для обеспечения биосинтеза необходимого количества эндогенных белков человеку потребуется значительно больше растительных белков, чем животных.Таким образом, для нормального роста и гармоничного развития организма человека исключительно большое значение имеют составление и подбор пищевых продуктов, содержащих оптимальный аминокислотный состав и обеспечивающих физиологически полноценное питание для разных групп населения с учетом не только возраста и пола, но и различных климатических условий, характера труда, сезона года и т.д

Билет 6

Глюко́за (C6H12O6), или виноградный сахар, или декстроза встречается в соке многих фруктов и ягод, в том числе и винограда, отчего и произошло название этого вида сахара. Является шестиатомным сахаром (гексозой). Глюкоза может восстанавливаться в шестиатомный спирт (сорбит). Как и все альдегиды, глюкоза легко окисляется. Она восстанавливает серебро из аммиачного раствора оксида серебра и медь(II) до меди(I). Проявляет восстановительные свойства. В частности в реакции растворов сульфата меди с глюкозой и гидроксидом натрия. При нагревании эта смесь реагирует с обесцвечением (сульфат меди сине-голубой) и образованием красного осадка оксида меди(I). Образует оксимы с гидроксиламином, озазоны с производными гидразина. легко алкилируется и ацилируется. При окислении образует глюконовую кислоту, если воздействовать сильными окислителями на ее гликозиды, и гидролизовать полученный продукт можно получить глюкуроновую кислоту, при дальнейшем окислении образуется глюкаровая кислота. Также обладает специфическими свойствами:

а) спиртовое брожение с образованием этилового спирта и углекислого газа

б) молочно-кислое брожение с образованием молочной кислоты,

в) маслянокислое брожение, при котором образуется масляная кислота ,и выделяются углекислый газ и водород.

ФРУКТОЗА (арабино-гексулоза, левулоза, фруктовый сахар), моносахарид из группы кетогексоз, мол. м. 180,2. В природе встречается только D-фруктоза; в кристаллич. состоянии известна b-D-фpyктoпиpaнoзa (ф-ла I) - гигроскопичные бесцв. призмы или иглы; т. пл. 103-105 0C (с разл.);-132,2° - 92,4° (концентрация 4 г в 100 мл H2O; показатель меняется в результате мутаротации); хорошо раств. в воде, заметно раств. в метаноле, этаноле, пиридине, ацетоне, ледяной уксусной к-те; безводная форма устойчива выше 21,4 0C, ниже 20 0C известны полугидрат и дигидрат; кристаллизуется из метанола. В водном р-ре фруктоза существует в виде смеси таутомеров, в к-рой содержится до 15% фуранозной формы и значит. кол-во ациклич. формы. Фруктоза дает общие р-ции на кетозы, проявляет восстанавливающие св-ва, образует ряд характерных производных благодаря карбонильной группе, в частности фенилозазон (II), идентичный фенилозазонам глюкозы и маннозы. При восстановлении карбонильной группы фруктозы образуются сорбит и ман-нит. Фруктоза не устойчива в щелочах и к-тах и может полностью разрушаться в условиях кислотного гидролиза полисахаридов или гликозидов (напр., при нагр. с 2 н. H2SO4 при 100 0C в течение неск. ч), при к-ром обычные альдозы не подвергаются деструкции.

Фруктоза содержится в живых организмах как в своб. виде, так и в виде эфиров фосфорной к-ты. Остатки фруктозы в виде b-D-фрукто-фуранозы (III) входят в состав многих растит. олигосахаридов (сахароза, раффиноза, стахиоза и др.) и полисахаридов (растит, фруктаны - инулин, флеин и др., бактериальные - леван). В свобод. виде фруктоза содержится во мн. фруктах, плодах, пчелином меде (до 50%). Для получения фруктозы осуществляют гидролиз фруктанов (напр., инулина) или сахарозы с помощью разб. к-т, или ферментов с послед. осаждением фруктозы из водного р-ра в виде нераств. комплекса с Ca(OH)2.

Рибоза, моносахарид из группы пентоз (альдопентоз). Существует в виде оптически активных D- и L-форм и неактивного рацемата. Р. — кристаллы, хорошо растворимые в воде; tпл = 86—87 °C (D-форма). Особенность Р. — высокое (8,5%) содержание ациклической (альдегидной) формы в растворе. D-P. — универсальный компонент всех живых организмов; она входит в состав важнейших соединений, осуществляющих в клетках перенос информации и энергии, — рибонуклеиновых кислот, нуклеозидов, моно- и динуклеотидов (см., например, аденозинфосфорные кислоты), а также некоторых коферментов и бактериальных полисахаридов.

Дезоксирибо́за C5H10O4 — углевод, альдопентоза: моносахарид, содержащий пять атомов углерода и альдегидную группу в линейной структуре. Это дезоксисахар — производное рибозы, где гидроксильная группа у второго атома углерода замещена водородом с потерей атома кислорода (дезокси — отсутствие атома кислорода). Химическая формула была открыта в 1929 году Фибусом Ливеном (Phoebus Levene). Рибоза формирует пятичленное кольцо, состоящее из четырёх атомов углерода и атома кислорода. Гидроксильные группы соединены к трём атомам углерода. Последний атом углерода и гидроксильная группа связаны с одним из атомов углерода, соединённых с кислородом. В дезоксирибозе атом углерода, расположенный дальше всего от атома кислорода лишён гидроксильной группы. входит в состав ДНК, вместе с азотистым основанием и остатком фосфорной кислоты образуя мономерную единицу дезоксирибонуклеиновой кислоты — нуклеотид.

Билет 7

сахароза C12H22O11, или свекловичный сахар, тростниковый сахар, в быту просто сахар — дисахарид, состоящий из двух моносахаридов — α-глюкозы и β-фруктозы. Сахароза является весьма распространённым в природе дисахаридом, она встречается во многих фруктах, плодах и ягодах. Особенно велико содержание сахарозы в сахарной свёкле и сахарном тростнике, которые и используются для промышленного производства пищевого сахара. Сахароза имеет высокую растворимость. В химическом отношении сахароза довольно инертна, так как при перемещении из одного места в другое почти не вовлекается в метаболизм. Иногда сахароза откладывается в качестве запасного питательного вещества. Сахароза, попадая в кишечник, быстро гидролизуется альфа-глюкозидазой тонкой кишки на глюкозу и фруктозу, которые затем всасываются в кровь. Ингибиторы альфа-глюкозидазы, такие, как акарбоза, тормозят расщепление и всасывание сахарозы, а также и других углеводов, гидролизуемых альфа-глюкозидазой, в частности, крахмала. Это используется в лечении сахарного диабета 2-го типа. Молекулярная масса 342,3 а. е. м. Брутто-формула (система Хилла): C12H22O11. Вкус сладковатый. Растворимость (грамм на 100 грамм растворителя): в воде 179 (0 °C) и 487 (100 °C), в этаноле 0,9 (20 °C). Малорастворима в метаноле. Не растворима в диэтиловом эфире. Плотность 1,5879 г/см3 (15 °C). Удельное вращение для D-линии натрия: 66,53 (вода; 35 г/100г; 20 °C). При охлаждении жидким воздухом, после освещения ярким светом кристаллы сахарозы фосфоресцируют. Не проявляет восстанавливающих свойств — не реагирует с реактивом Толленса и реактивом Фелинга. Не образует открытую форму, поэтому не проявляет свойств альдегидов и кетонов. Наличие гидроксильных групп в молекуле сахарозы легко подтверждается реакцией с гидроксидами металлов. Если раствор сахарозы прилить к гидроксиду меди (II), образуется ярко-синий раствор сахарата меди. Альдегидной группы в сахарозе нет: при нагревании с аммиачным раствором оксида серебра (I) она не дает «серебряного зеркала», при нагревании с гидроксидом меди (II) не образует красного оксида меди (I). Из числа изомеров сахарозы, имеющих молекулярную формулу С12Н22О11, можно выделить мальтозу и лактозу.

Мальтоза (от англ. malt — солод) — солодовый сахар, 4-О-α-D-глюкопиранозил-D-глюкоза, природный дисахарид, состоящий из двух остатков глюкозы; содержится в больших количествах в проросших зёрнах (солоде) ячменя, ржи и других зерновых; обнаружен также в томатах, в пыльце и нектаре ряда растений. Биосинтез мальтозы из β-D-глюкопиранозилфосфата и D-глюкозы известен только у некоторых видов бактерий. В животном и растительном организмах мальтоза образуется при ферментативном расщеплении крахмала и гликогена (см. Амилазы). Мальтоза легко усваивается организмом человека. Расщепление мальтозы до двух остатков глюкозы происходит в результате действия фермента a-глюкозидазы, или мальтазы, которая содержится в пищеварительных соках животных и человека, в проросшем зерне, в плесневых грибах и дрожжах. Генетически обусловленное отсутствие этого фермента в слизистой оболочке кишечника человека приводит к врождённой непереносимости мальтозы — тяжёлому заболеванию, требующему исключения из рациона мальтозы, крахмала и гликогена или добавления к пище фермента мальтазы. Мальтоза является восстанавливающим сахаром, так как имеет незамещённую полуацетальную гидроксильную группу. При кипячении мальтозы с разбавленной кислотой и при действии фермента мальтаза гидролизуется (образуются две молекулы глюкозы C6H12O6).

Лактоза (от лат. lactis — молоко) С12Н22О11 — углевод группы дисахаридов, содержится в молоке и молочных продуктах. Молекула лактозы состоит из остатков молекул глюкозы и галактозы. Лактозу иногда называют молочным сахаром. При кипячении с разбавленной кислотой происходит гидролиз лактозы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]