Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
biohimia.doc
Скачиваний:
7
Добавлен:
14.04.2019
Размер:
1.63 Mб
Скачать

Структура

Азотистые основания в составе РНК могут образовывать водородные связи между цитозином и гуанином, аденином и урацилом, а также между гуанином и урацилом [15]. Однако возможны и другие взаимодействия, например, несколько аденинов могут образовывать петлю, или петля, состоящая из четырёх нуклеотидов, в которой есть пара оснований аденин — гуанин[16].

Разные формы нуклеиновых кислот. На рисунке (слева направо) представлены A (типична для РНК), B (ДНК) и Z (редкая форма ДНК)

Важная структурная особенность РНК, отличающая её от ДНК — наличие гидроксильной группы в 2' положении рибозы, которая позволяет молекуле РНК существовать в А, а не В-конформации, наиболее часто наблюдаемой у ДНК[17]. У А-формы глубокая и узкая большая бороздка и неглубокая и широкая малая бороздка[18]. Второе последствие наличия 2' гидроксильной группы состоит в том, что конформационно пластичные, то есть не принимающие участие в образовании двойной спирали, участки молекулы РНК могут химически атаковать другие фосфатные связи и их расщеплять [19].

Вторичная структура РНК-компонента теломеразы простейших

«Рабочая» форма одноцепочечной молекулы РНК, как и у белков, часто обладает третичной структурой. Третичная структура образуется на основе элементов вторичной структуры, образуемой с помощью водородных связей внутри одной молекулы. Различают несколько типов элементов вторичной структуры — стебель-петли, петли и псевдоузлы[20]. В силу большого числа возможных вариантов спаривания оснований предсказание вторичной структуры РНК — гораздо более сложная задача, чем предсказание вторичной структуры белков, но в настоящее время есть эффективные программы, например, mfold [21].

Примером зависимости функции молекул РНК от их вторичной структуры являются участки внутренней посадки рибосомы (IRES). IRES — структура на 5' конце информационной РНК, которая обеспечивает присоединение рибосомы в обход обычного механизма инициации синтеза белка, требующего наличия особого модифицированного основания (кэпа) на 5' конце и белковых факторов инициации. Первоначально IRES были обнаружены в вирусных РНК, но сейчас накапливается всё больше данных о том, что клеточные мРНК также используют IRES-зависимый механизм инициации в условиях стресса[22].

Многие типы РНК, например, рРНК и мяРНК в клетке функционируют в виде комплексов с белками, которые ассоциируют с молекулами РНК после их синтеза или (у эукариот) экспорта из ядра в цитоплазму. Такие РНК-белковые комплексы называются рибонуклеопротеиновыми комплексами или рибонуклеопротеидами.

Матричная (информационная) РНК — РНК, которая служит посредником при передаче информации, закодированной в ДНК к рибосомам, молекулярным машинам, синтезирующим белки живого организма. Кодирующая последовательность мРНК определяет последовательность аминокислот полипептидной цепи белка [29]. Однако подавляющее большинство РНК не кодируют белок. Эти некодирующие РНК могут транскрибироваться с отдельных генов (например, рибосомальные РНК) или быть производными интронов [30]. Классические, хорошо изученные типы некодирующих РНК — это транспортные РНК (тРНК) и рРНК, которые участвуют в процессе трансляции [31]. Существуют также классы РНК, ответственные за регуляцию генов, процессинг мРНК и другие роли. Кроме того, есть и молекулы некодирующих РНК, способные катализировать химические реакции, такие, как разрезание и лигирование молекул РНК[32]. По аналогии с белками, способными катализировать химические реакции — энзимами (ферментами), каталитические молекулы РНК называются рибозимами.

Синтез белка и его созревание

Биосинтез белка [трансляция мРНК (mRNA)] всегда начинается в цитоплазме (1). Определенная последовательность из 15-60 аминокислот в начале цепи, обозначаемая как сигнальный пептид, указывает место синтеза (см. с. 232). Если образующийся на рибосоме белок начинается с сигнального пептида (2), ориентирующего белок на шероховатый эндоплазматический ретикулум (ШЭР), с ним связывается РНК-содержащая сигнал-узнающая частица SRP (англ signal-recognition particle) и трансляция временно прерывается (3). SRP связывает рибосому посредством SRP-рецептора с мембраной ШЭР (4). Как только рибосома закрепится на мембране, SRP-частица диссоциирует От сигнального пептида и от SRP-рецептора [при этом гидролизуется ГТФ (GTP)], и на рибосоме вновь начинается процесс трансляции (5). Белковая цепь на рибосоме растет и, еще не свернувшись, проходит через мембрану по каналу, называемому транслоконом, в просвет ШЭР (см. с. 230) (6).

Прохождение растущего пептида через мембрану может быть прервано соответствующим стоп-сигналом (см. с. 232). В этом случае пептид остается погруженным в мембрану и дает начало интегральному мембранному белку. В ходе белкового синтеза возможно многократное прохождение растущей цепи через мембрану и возобновление синтеза вновь при посредстве сигнального пептида Образующийся по такому механизму мембранный белок будет иметь множество трансмембранных участков.

Модификации в ШЭР. Превращение линейной немодифицированной пептидной цепи в полноценный функциональный белок (созревание) осуществляется в результате многостадийного процесса, который начинается сразу же после начала трансляции и протекает в просвете ЭР.

Прежде всего соответствующая пептидаза отщепляет сигнальный пептид (1). Фермент узнает точку расщепления в составе< специфической N-концевой последовательности белка.

Путем окисления боковых цепей цистеина образуются дисульфидные мостики, правильность положения которых контролируется протеиндисульфид-изомеразой (2).

Пептидилпролил-изомераза контролирует цис-транс-изомеризацию Х-Рго-связей в синтезируемом пептиде (3)

Трансгликозидазы переносят олигосахариды в блоке с долихолом (длинноцепочечным изопреноидом) на определенные остатки аспарагиновой кислоты в белке, тем самым осуществляя N-гликозилирование белка (4).

Гликозидазы «подстригают» олигосахариды, отщепляя избыточные остатки глюкозы и маннозы (5).

Для того чтобы растущая полипептидная цепь могла свернуться необходимым образом, с еще линейным участком цепи временно связываются шапероны (6). Эти белки направляют процесс свертывания цепи путем подавления нежелательных побочных взаимодействий. Наиболее важным шапероном, присутствующим в просвете ШЭР. является белок связывания (BiP, от англ. binding protein). Когда вновь образованный белок приобретает правильную вторичную и третичную структуру и остатки глюкозы удалены полностью, он с помощью транспортных везикул перемещается в аппарат Гольджи (см. с. 230).

Модификации в аппарате Гольджи. В аппарате Гольджи осуществляются следующие ферментативные стадии модификации белка: фосфорилирование (7) и отщепление с последующим переносом (перегруппировка) остатков сахаров с помощью гликозидаз и гликозилтрансфераз (8). Эта модификация имеет целью образование специфической олигосахаридной структуры в гликопротеинах.

Наконец, в секреторных пузырьках (везикулах) отщепляется еще один пептид (9), прежде чем содержимое секретируется посредством экзоцитоза. Это отщепление, катализируемое специфичными пептидазами, выполняет функцию активации секретируемого белка. Например, отщепление С-пептида от неактивного проинсулина приводит к образованию активного гормона инсулина (см. с. 162).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]