Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
аиг.docx
Скачиваний:
14
Добавлен:
14.04.2019
Размер:
339.15 Кб
Скачать

4. Свойства модуля и аргумента кч. Ф-лы Муавра.

Св-ва модуля: Число |z|=(x^2+y^2)^(1/2) называется модулем числа z. Для вещественного числа модуль совпадает с его абсолютной величиной. Некоторые свойства модуля:

|z|>=0, причём |z|=0 тогда и только тогда, когда z=0; |z1+z2|<=|z1|+|z2| (неравенство треугольника); |a*z|=a*|z|, - эти три свойства вводят на комплексных числах структуру двумерного нормированного пространства над полем R;

|z1*z2|=|z1|*|z2|; |z1/z2|=|z1|/|z2|.

Угол f такой, что: cos(f)=x/|z| и sin(f)=y/|z|, называется аргументом z. Для комплексного нуля значение аргумента не определено, для ненулевого числа z аргумент определяется с точностью до 2Пk, где k - любое целое число. Из определения следует, что tg(f)=y/x.

Св-ва аргумента: аргумент произведения равен сумме аргументов, аргумент частного равен разности аргументов, арг(з)^н=н*арг(з), аргумент сопряжённого кч равен отрицательному аргументу кч.

Ф-ла Муавра: Формула Муавра для комплексных чисел z=r*(cos(f)+i*sin(f)), заданная в тригонометрической форме - формула (r(cos(f)+i*sin(f)))^n=r^n*(cos(nf)+i*sin(nf)) для любого n из Z. Аналогичная формула применима также и при вычислении корней n-ой степени из ненулевого комплексного числа

Отметим, что корни n-й степени из комплексного числа всегда существуют, и их количество равно n. На комплексной плоскости, как видно из формулы, все эти корни являются вершинами правильного n-угольника, вписанного в окружность радиуса (r)^(1/n) с центром в точке 0.

5. Ф-ла Эйлера. Показательная форма записи кч.

Ф-ла Эйлера: Формула Эйлера утверждает, что для любого вещественного числа x выполнено следующее равенство: e^(ix)=cos(x)+i*sin(x), где e - основание натурального логарифма, i - мнимая единица.

Док-во: Доказательство формулы Эйлера достаточно тривиально. Разложим функцию e^(ix) в ряд Тейлора по степеням x. Получим: e^(ix)=1+ix/1!+(ix)^2/2!+(ix)^3/3!...=(1-x^2/2!+x^4/4!-x^6/6!+…)+i(x/1!-x^3/3!+x^5/5!-...)

Но (1-x^2/2!+x^4/4!-x^6/6!+…)=cos(x), (x/1!-x^3/3!+x^5/5!-...)=sin(x). Поэтому e^(ix)=cos(x)+i*sin(x).

Показательная и тригонометрические функции в области комплексных чисел связаны между собой формулой e^(ix)=cos(x)+i*sin(x), которая носит название формулы Эйлера. Обосновать ее можно с помощью теории степенных рядов. Эта теория будет изложена в курсе математического анализа. Пусть комплексное число z в тригонометрической форме имеет вид z=r*(cos(x)+i*sin(x)). На основании формулы Эйлера выражение в скобках можно заменить на показательное выражение. В результате получим z=r*e^(ix). Эта запись называется показательной формой комплексного числа. Так же, как и в тригонометрической форме, здесь r=|z|, x=arg(z).

6. Тригонометрические и гиперболические ф-ции комплексного аргумента.

Заменим в формуле Эйлера f на -f. Получим: e^(-if)=cos(-f)+i*sin(-f). С учетом свойств тригонометрических функций имеем: e^(-if)=cos(f)-i*sin(f).

Сложив последнюю формулу с формулой Эйлера, получим: e^(if)+e^(-if)=2cos(f).

7. Матрицы. Различные виды матриц.

Матрица — математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Обычно матрицы представляются двумерными (прямоугольными) таблицами. Иногда рассматривают многомерные матрицы или матрицы непрямоугольной формы. В данной статье они рассматриваться не будут.У каждого элемента матрицы есть 2 нижних индекса (aij) — первый «i» обозначает номер строки, в которой находится элемент, а второй «j» — номер столбца. Говорят «матрица размерности », подразумевая, что в матрице m строк и n столбцов. В одной матрице всегда ,

Пусть aij — элементы матрицы A, а bij — элементы матрицы B.

Линейные операции:

Умножение матрицы A на число λ (обозначение: λA) заключается в построении матрицы B, элементы которой получены путём умножения каждого элемента матрицы A на это число, то есть каждый элемент матрицы B равен bij = λaij

Сложение матриц A + B есть операция нахождения матрицы C, все элементы которой равны попарной сумме всех соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен cij = aij + bij

Вычитание матриц A − B определяется аналогично сложению, это операция нахождения матрицы C, элементы которой cij = aij - bij

Сложение и вычитание допускается только для матриц одинакового размера.

Существует нулевая матрица Θ такая, что её прибавление к другой матрице A не изменяет A, то есть A + Θ = A

Все элементы нулевой матрицы равны нулю.

Нелинейные операции:

Умножение матриц (обозначение: AB, реже со знаком умножения ) — есть операция вычисления матрицы C, элементы которой равны сумме произведений элементов в соответствующей строке первого множителя и столбце второго.

В первом множителе должно быть столько же столбцов, сколько строк во втором. Если матрица A имеет размерность , B — , то размерность их произведения AB = C есть .

Возводить в степень можно только квадратные матрицы.

Транспонирование матрицы (обозначение: AT) — операция, при которой матрица отражается относительно главной диагонали, то есть

Если A — матрица размера , то AT — матрица размера

[править] Свойства операций над матрицами

Ассоциативность сложения: A + (B + C) = (A + B) + C.

Коммутативность сложения: A + B = B + A.

Ассоциативность умножения: A(BC) = (AB)C.

Вообще говоря, умножение матриц не коммутативно: . Используя это свойство, вводят коммутатор матриц.

Дистрибутивность умножения относительно сложения:

A(B + C) = AB + AC;

(B + C)A = BA + CA.

С учётом упомянутых выше свойств, матрицы образуют кольцо относительно операций сложения и умножения.

Свойства операции транспонирования матриц:

(AT)T = A

(AB)T = BTAT

(A − 1)T = (AT) − 1, если обратная матрица A - 1 существует.

Соседние файлы в предмете Алгебра и геометрия