Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на д.м.doc
Скачиваний:
4
Добавлен:
23.12.2018
Размер:
380.42 Кб
Скачать

2 Билет

1 Вопрос

1. Универсальное множество — это такое множество, которое состоит из всех элементов, а так же подмножеств множества объектов исследуемой области. Пустое множество - множество, которое не содержит ни одного элемента(пустое множество единственно).

2. Парадоксами теории множеств называют рассуждения, демонстрирующие противоречивость наивной теории множеств, такие как

    • парадокс Рассела,

    • парадокс Кантора,

    • парадокс Бурали-Форти;

Парадокс Расселя: Пусть K — множество всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли K само себя в качестве элемента? Если да, то, по определению K, оно не должно быть элементом K — противоречие. Если нет — то, по определению K, оно должно быть элементом K — вновь противоречие.

  1. Современная теория множеств строится на системе аксиом, из которых выводятся все теоремы и утверждения теории множеств. Система аксиом Цермело — Френкеля (ZF) является стандартной для теории множеств. К ней часто добавляют аксиому выбора, и называют системой Цермело — Френкеля с аксиомой выбора (ZFC)

Аксиомы zfc

1. Аксиома объёмности. Два множества a и b равны тогда и только тогда, когда они имеют одни и те же элементы.

2. Аксиома пустого множества. Существует множество e без единого элемента. Это множество обычно обозначается {} или .

3. Аксиома пары. Для любых множеств a и b существует множество c такое, что a и b являются его единственными элементами. Множество c обозначается {a,b} и называется неупорядоченной парой a и b. Если a = b, то c состоит из одного элемента.

4. Аксиома объединения. Для любого семейства a множеств существует множество , называемое объединением множества a, состоящее из тех и только тех элементов, которые содержатся в элементах множества a.

5. Аксиома бесконечности. Аксиомы с 1 по 4 предоставляют ограниченные возможности для формирования новых множеств. Так, по теореме Кантора во множестве имеется элемент, не принадлежащий a, поэтому, например, не существует «множества всех множеств» (парадокс Рассела). Далее введём определение: множество называется индуктивным, если оно а) содержит пустое множество и б) содержит последователь (то есть элемент ) каждого своего элемента. Аксиома бесконечности утверждает, что индуктивные множества существуют.

6. Схема выделения. Любому множеству a и свойству отвечает множество b, элементами которого являются те и только те элементы a, которые обладают свойством . Схема выделения содержит счётное количество аксиом, так как каждая формула логики первого порядка порождает аксиому.

7. Аксиома множества подмножеств. Для любого множества a существует множество b, состоящее из тех и только тех элементов, которые являются подмножествами множества a. Множество подмножеств множества a обозначается .

8. Схема подстановки. Пусть - такая формула, что при любом x0 из множества X существует, и притом единственный, объект y0 такой, что выражение истинно. Тогда объекты c, для каждого из которых существует d из X такой, что истинно, образуют множество. Схема подстановки содержит счётное количество аксиом, так как каждая подходящая формула порождает аксиому.

9. Аксиома основания. Каждое непустое множество s содержит элемент a такой, что .

10. Аксиома выбора. Для каждого семейства A непустых непересекающихся множеств существует множество B, имеющее один и только один общий элемент с каждым их множеств X, принадлежащих A.