- •Научное содержание предмета «Безопасность жизнедеятельности». Задачи бжд.
- •Опасности как результат взаимодействия человека со средой обитания. Аксиома о потенциальной опасности. Классификация опасностей.
- •Опасности. Признак опасности. Идентификация опасностей. Качественная характеристика опасностей.
- •Проблема защиты от опасностей в системе «Человек- машина». Методы, способы и принципы защиты от опасностей. Понятие риска. Методы прогнозирования риска.
- •Риск как количественная оценка опасностей. Индивидуальный и коллективный риск. Понятие приемлемого риска. Основные методы прогнозирования риска.
- •Антропометрическая характеристика человека и ее значение для деятельности мужчин, женщин, подростков.
- •Физиологическая характеристика человека. Анализаторы человека и их сравнительная оценка.
- •Психологические характеристики человека. Психическая деятельность
- •Характеристика основных форм деятельности человека. Физический труд. Энергетические затраты человека при физическом труде. Тяжесть труда.
- •Характеристика основных форм деятельности человека. Умственный труд. Напряженность труда. Факторы, определяющие напряженность труда.
- •11. Условия труда и их классификация. Работоспособность. Динамика работоспособности и пути ее повышения.
- •12. Микроклимат и воздушная среда рабочей зоны.
- •13. Нагревающий и охлаждающий микроклимат. Перегрев и переохлаждение. Мероприятия по предупреждению неблагоприятного воздействия микроклимата.
- •14. Система терморегуляции как одна из защитных систем человека. Тепловыделения организма.
- •15. Производственное освещение. Виды производственного освещения. Источники производственного освещения, их достоинства и недостатки.
- •16. Производственной освещение. Основные светотехнические величины.. Действие света на организм человека. Виды и системы освещения. Порядок расчета естественного и искусственного освещения
- •17. Вредные вещества в воздушной среде рабочей зоны. Их классификация по характеру воздействия на организм.
- •18. Вредные вещества рабочей зоны. Классификация вредных веществ по степени опасности.
- •19. Нормирование содержания вредных веществ в рабочей зоне. Методы контроля состояния воздушной среды.
- •20. Твердые вредные вещества – пыли. Их классификация и действие на человека.
- •21. Назначение и классификация промышленной вентиляции. Воздухообмен. Естественная и механическая вентиляция. Методы расчета.
- •22. Производственный шум. Основные понятия и определения. Действие шума на организм человека.
- •23. Принципы нормирования производственного шума. Средства индивидуальной и коллективной защиты от шума
- •24. Инфразвук и ультразвук. Влияние на человека. Средства индивидуальной и коллективной защиты.
- •25.Производственная вибрация.
- •26. Электробезопасность .
- •27. Электробезопасность.
- •28. Классификация помещений по электробезопасности. Защита от статического электричества.
- •29. Постоянные электрические и магнитные поля. Действие пмп и пэсп на человека. Нормирование и методы защиты.
- •30. Электромагнитные излучения.
- •Ионизирующие излучения.
- •32Ионизирующие излучения.
- •33Пожаробезопасность.
- •34 Пожароопасные объекты. Поражающие факторы пожара.
- •35Предотвращение взрывов и пожаров на производстве. Принципы и средства пожаротушения. Основные правила поведения на пожаре.
- •Классификация чрезвычайных ситуаций и объектов экономики по потенциальной опасности.
- •38Классификация стихийных бедствий и природных катастроф. Характеристика поражающих факторов источников чрезвычайных ситуаций природного характера
- •Устойчивость функционирования объектов экономики в чрезвычайных ситуациях. Принципы и способы повышения устойчивости функционирования объектов в чрезвычайных ситуациях.
- •Органы государственного управления безопасностью: органы управления, надзора и контроля за безопасностью, их основные функции, права и обязанности, структура.
28. Классификация помещений по электробезопасности. Защита от статического электричества.
Классификация помещений по опасности поражения током:
1.Помещения без повышенной опасности--это сухие, бес пыльные помещения с нормальной температурой. Пример: жилые помещения.
2.Помещения с повышенной опасностью:
--сырость, относительная влажность 75%;
--высокая температура более 30 градусов;
--токопроводящая пыль.
Пример: цехи механической обработки, металлические полы, металлические лестницы.
3.Помещения особо опасные:
--сырость 100%;
--химически активная среда.
2
Заряды статического электричества могут возникнуть при соприкосновении или трении твердых материалов, при размельчении или пересыпании однородных и разнородных непроводящих материалов, при разбрызгивании диэлектрических жидкостей, при транспортировке сыпучих веществ и жидкостей по трубопроводам. Эти заряды вызывают нарушения технологического процесса, из-за большой напряженности электрического поля возникают сильные разряды, которые могут привести к пожарам, взрывам и, как следствие, к травмам обслуживающего персонала. Статическое электричество угнетающе действует на человека, вызывает утомление, приводит к ошибочным действиям.
Основными мерами защиты от статического электричества являются заземление металлических частей оборудования, которые могут быть электризованы, нанесение на поверхность сплошных или несплошных проводящих покрытий (пленок), применение токопроводящих полов и обуви, обеспечение утечки генерируемого заряда на заземленные части за счет увлажнения окружающей атмосферы, изменение режима технологического процесса, применение нейтрализаторов (индукционных, высоковольтных, радиоактивных).
29. Постоянные электрические и магнитные поля. Действие пмп и пэсп на человека. Нормирование и методы защиты.
Существование человека в любой среде связано с воздействием на него и среду обитания электромагнитных полей. В случаях неподвижных электрических зарядов мы имеем дело с электростатическими полями. При трении диэлектриков на их поверхности появляются избыточные заряды, на сухих руках накапливаются электрические заряды, создающие потенциал до 500В. Земной шар заряжен отрицательно так, между поверхностью Земли и верхними слоями атмосферы разность потенциалов составляет 400000В. Это электрическое поле создает между двумя уровнями, отстоящими на рост человека, разность потенциалов порядка 200В, однако человек этого не ощущает, так как хорошо проводит электрических ток и все точки его тела находятся под одним потенциалом.
При своем движении облака заряжаются в результате трения. Разные части грозового облака несут заряды различных знаков. Чаще всего нижняя часть облака заряжена отрицательно, а верхняя – положительно. Если облака сближаются разноименно заряженными частицами, между ними проскакивает молния – электрический заряд. Проходя над Землей, грозовое облако создает на ее поверхности большие наведенные заряды. Разность потенциалов между облаком и Землей достигает огромных значений, измеряемых сотнями миллионов вольт, и в воздухе возникает сильное электрическое поле. При благоприятных условиях возникает пробой. Молния иногда поражает людей и вызывает пожары.
Заряды имеют свойство в большей степени накапливаться на остриях или телах, близких по форме к остриям. Вблизи таких предметов создаются высокие электрические напряжения. Поэтому чаще всего молнии попадают в высокие отдельно стоящие объекты (деревья, башни и др.), и по этой причине человеку опасно находится на открытом пространстве во время грозы или вблизи отдельных деревьев, металлических предметов. Молнии являются также причиной около половины всех аварий в крупных линиях электропередачи. Для защиты зданий и различных сооружений от статического атмосферного электричества применяются молниеотводы. Это высокий металлический стержень с заостренным концом или в виде метелки тоненьких металлических прутьев. Стержень должен проходить вдоль стены здания, внизу к нему припаивается медная пластина, которая закапывается в землю. Если на здание грозовым облаком наводится заряд, он стекает через острие молниеотвода (за счет ионизации воздуха в электрическом поле у острия), уменьшая опасность попадания молнии. Если же разряд произойдет, то молния попадет в молниеотвод и уйдет в землю, не повредив здание.
Наряду с естественными статическими электрическими полями в условиях техносферы и в быту человек подвергается воздействию искусственных статических электрических полей.
Искусственные статические электрические поля обусловлены возрастающим применением для изготовления предметов домашнего обихода, игрушек, обуви, одежды, для отделки интерьеров, жилых и общественных зданий, для изготовления строительных деталей, производственного оборудования, аппаратуры, инструментов, деталей машин различных синтетических материалов, являющихся диэлектриками.
При функциональных заболеваниях нервной системы применяют лечение постоянным электрическим полем. Под действием внешнего строгого дозированного электрического поля происходит перераспределение зарядов в тканях организма, что улучшает окислительно-восстановительные процессы, лучше используется кислород, заживают раны
Постоянные магнитные поля в обычных условиях не представляют опасности и находят применение в различных приборах магнитотерапии.
Воздействие на человека электромагнитных полей промышленной частоты и радиочастот
Линии электропередачи, электрооборудование, различные электроприборы – все технические системы, генерирующие, передающие и использующие электромагнитную энергию, создают в окружающей среде электромагнитные поля (переменные электрические и неразрывно связанные с ними переменные магнитные поля).
Действие на организм человека электромагнитных полей определяется частотой излучения, его интенсивностью, продолжительностью и характером действия, индивидуальными особенностями организма. Спектр электромагнитных полей включает низкие частоты до 3 Гц, промышленные частоты – от 3 Гц до 300 Гц, радиочастоты – от 30 Гц до 300 МГц, а также относящиеся к радиочастотам ультравысокие частоты (УВЧ) – от 300 МГц до 300 ГГц.
Электромагнитное излучение радиочастот широко используется в связи, телерадиовещании, в медицине, радиолокации, радионавигации и т.д.
Электромагнитные поля оказывают на организм человека тепловое и биологическое воздействие. Переменное электрическое поле вызывает нагрев диэлектриков (хрящей, сухожилий и др.) за счет токов проводимости и за счет переменной поляризации. Выделение теплоты может приводить к перегреванию, особенно тех органов и тканей, которые недостаточно хорошо снабжены кровеносными сосудами (хрусталик глаза, желчный пузырь, мочевой пузырь). Наиболее чувствительны к биологическому воздействию радиоволн центральная нервная и сердечно-сосудистая системы. При длительном действии радиоволн не слишком большой интенсивности (порядка 10 Вт/м2) появляются головные боли, быстрая утомляемость, изменение давления и пульса, нервно-психические расстройства. Может наблюдаться похудение, выпадение волос, изменение в составе крови.
Воздействие СВЧ-излучения интенсивностью более 100 Вт/м2 может привести к помутнению хрусталика глаза и потере зрения, тот же результат может дать длительное облучение умеренной интенсивности (порядка 10 Вт/м2), при этом возможны нарушения со стороны эндокринной системы, изменения углеводного и жирового обмена, сопровождающиеся похудением, повышение возбудимости, изменение ритма сердечной деятельности, изменения в крови (уменьшение количества лейкоцитов).
Действию электромагнитных полей промышленной частоты человек подвергается в производственной, городской и бытовой зонах. Санитарными нормами установлены предельно допустимые уровни напряженности электрического поля внутри жилых зданий, на территории жилой зоны. Люди, страдающие от нарушений сна и головных болей, должны перед сном убирать или отключать электрические приборы, генерирующие электрические поля.
Воздействие электромагнитных полей может быть изолированным – от одного источника, сочетанным – от двух и более источников одного частотного диапазона, смешанным – от двух и более источников электромагнитных полей различных частотных диапазонов, и комбинированным – в случае одновременного действия какого-либо другого неблагоприятного фактора.
Воздействие может быть постоянным или прерывистым, общим (облучается все тело) или местным (облучается часть тела). В зависимости от места нахождения человека относительно источника излучения он может подвергаться воздействию электрической или магнитной составляющих поля или их сочетанию, а в случае пребывания в волновой зоне – воздействию сформированной электромагнитной волны.
2
Контроль уровней электрического поля осуществляется по значению напряженности электрического поля, выраженной в В/м. Контроль уровней магнитного поля осуществляется по значению напряженности магнитного поля, выраженной в А/м.
Энергетическим показателем для волновой зоны излучения является плотность потока энергии, или интенсивность, – энергия, проходящая через единицу поверхности, перпендикулярной к направлению, распространения электромагнитной волны за одну секунду. Измеряется в Вт/м2. Нормирование уровней в соответствии с ГОСТ 12.1.006-84.
Длительное действие электрических полей может вызывать головную боль в височной и затылочной области, ощущение вялости, расстройство сна, ухудшение памяти, депрессию, апатию, раздражительность, боли в области сердца. Для персонала ограничивается время пребывания в электрическом поле в зависимости от напряженности поля (180 минут в сутки при напряженности 10 кВ/м, 10 минут в сутки при напряженности 20 кВ/м).
Способы защиты от вредного воздействия электромагнитных полей
Защита человека от опасного воздействия электромагнитного облучения осуществляется следующими способами: уменьшением излучения от источника; экранированием источника излучения и рабочего места; установлением санитарно-защитной зоны; поглощением или уменьшение образования зарядов статического электричества; устранением зарядов статического электричества; применением средств индивидуальной защиты.
Уменьшение мощности излучения от источника реализуется применением поглотителей электромагнитной энергии; блокированием излучения.
Поглощение электромагнитных излучений осуществляется поглотительным материалом путем превращения энергии электромагнитного поля в тепловую. В качестве такого материала применяют каучук, поролон, пенополистерол, ферромагнитный порошок со связывающим диэлектриком.
Экранирование источника излучения и рабочего места производится специальными экранами. При этом различают отражающие и поглощающие экраны. Первые изготавливают из материала с низким электросопротивлением — металлы и их сплавы (медь, латунь, алюминий, сталь, цинк). Они могут быть сплошные и сетчатые. Экраны должны быть заземлены для обеспечения стекания в землю образующихся на них зарядов.
Поглощающие экраны выполняют из радиопоглощающих материалов: эластичных или жестких пенопластов, резиновых ковриков, листов поролона или волокнистой древесины, обработанной специальным составом, а также из ферромагнитных пластин.
Для устранения зарядов статического электричества используют заземление частей оборудования, увлажнение воздуха.