
- •Научное содержание предмета «Безопасность жизнедеятельности». Задачи бжд.
- •Опасности как результат взаимодействия человека со средой обитания. Аксиома о потенциальной опасности. Классификация опасностей.
- •Опасности. Признак опасности. Идентификация опасностей. Качественная характеристика опасностей.
- •Проблема защиты от опасностей в системе «Человек- машина». Методы, способы и принципы защиты от опасностей. Понятие риска. Методы прогнозирования риска.
- •Риск как количественная оценка опасностей. Индивидуальный и коллективный риск. Понятие приемлемого риска. Основные методы прогнозирования риска.
- •Антропометрическая характеристика человека и ее значение для деятельности мужчин, женщин, подростков.
- •Физиологическая характеристика человека. Анализаторы человека и их сравнительная оценка.
- •Психологические характеристики человека. Психическая деятельность
- •Характеристика основных форм деятельности человека. Физический труд. Энергетические затраты человека при физическом труде. Тяжесть труда.
- •Характеристика основных форм деятельности человека. Умственный труд. Напряженность труда. Факторы, определяющие напряженность труда.
- •11. Условия труда и их классификация. Работоспособность. Динамика работоспособности и пути ее повышения.
- •12. Микроклимат и воздушная среда рабочей зоны.
- •13. Нагревающий и охлаждающий микроклимат. Перегрев и переохлаждение. Мероприятия по предупреждению неблагоприятного воздействия микроклимата.
- •14. Система терморегуляции как одна из защитных систем человека. Тепловыделения организма.
- •15. Производственное освещение. Виды производственного освещения. Источники производственного освещения, их достоинства и недостатки.
- •16. Производственной освещение. Основные светотехнические величины.. Действие света на организм человека. Виды и системы освещения. Порядок расчета естественного и искусственного освещения
- •17. Вредные вещества в воздушной среде рабочей зоны. Их классификация по характеру воздействия на организм.
- •18. Вредные вещества рабочей зоны. Классификация вредных веществ по степени опасности.
- •19. Нормирование содержания вредных веществ в рабочей зоне. Методы контроля состояния воздушной среды.
- •20. Твердые вредные вещества – пыли. Их классификация и действие на человека.
- •21. Назначение и классификация промышленной вентиляции. Воздухообмен. Естественная и механическая вентиляция. Методы расчета.
- •22. Производственный шум. Основные понятия и определения. Действие шума на организм человека.
- •23. Принципы нормирования производственного шума. Средства индивидуальной и коллективной защиты от шума
- •24. Инфразвук и ультразвук. Влияние на человека. Средства индивидуальной и коллективной защиты.
- •25.Производственная вибрация.
- •26. Электробезопасность .
- •27. Электробезопасность.
- •28. Классификация помещений по электробезопасности. Защита от статического электричества.
- •29. Постоянные электрические и магнитные поля. Действие пмп и пэсп на человека. Нормирование и методы защиты.
- •30. Электромагнитные излучения.
- •Ионизирующие излучения.
- •32Ионизирующие излучения.
- •33Пожаробезопасность.
- •34 Пожароопасные объекты. Поражающие факторы пожара.
- •35Предотвращение взрывов и пожаров на производстве. Принципы и средства пожаротушения. Основные правила поведения на пожаре.
- •Классификация чрезвычайных ситуаций и объектов экономики по потенциальной опасности.
- •38Классификация стихийных бедствий и природных катастроф. Характеристика поражающих факторов источников чрезвычайных ситуаций природного характера
- •Устойчивость функционирования объектов экономики в чрезвычайных ситуациях. Принципы и способы повышения устойчивости функционирования объектов в чрезвычайных ситуациях.
- •Органы государственного управления безопасностью: органы управления, надзора и контроля за безопасностью, их основные функции, права и обязанности, структура.
24. Инфразвук и ультразвук. Влияние на человека. Средства индивидуальной и коллективной защиты.
Сейчас акустика, как область физики рассматривает более широкий спектр упругих колебаний - от самых низких до предельно высоких, вплоть до 1012 - 1013 Гц. Не слышимые человеком звуковые волны с частотами ниже 16 Гц называют инфразвуком, звуковые волны с частотами от 20 000 Гц до 109Гц - ультразвуком, а колебания с частотами выше чем 109Гц называют гиперзвуком.
Этим неслышимым звукам нашли много применения.
Ультразвуки и инфразвуки имеют очень важную роль и в живом мире. Так, например, рыбы и другие морские животные чутко улавливают инфразвуковые волны, создаваемые штормовыми волнениями. Таким образом, они заранее чувствуют приближение шторма или циклона, и уплывают в более безопасное место. Инфразвук - это составляющая звуков леса, моря, атмосферы.
Ультразвуки могут издавать и воспринимать такие животные, как собаки, кошки, дельфины, муравьи, летучие мыши и др. Летучие мыши во время полёта издают короткие звуки высокого тона. В своём полете, они руководствуются отражениями этих звуков от предметов, встречающихся на пути; они могут даже ловить насекомых, руководствуясь только эхом от своей мелкой добычи. Кошки и собаки могут слышать очень высокие свистящие звуки (ультразвуки).
ИНФРАЗВУК (от лат. infra - ниже, под), не слышимые человеческим ухом упругие волны низкой частоты (менее 16 Гц). При больших амплитудах инфразвук ощущается как боль в ухе. Возникает при землетрясениях, подводных и подземных взрывах, во время бурь и ураганов, от волн цунами и пр. Поскольку инфразвук слабо поглощается, он распространяется на большие расстояния и может служить предвестником бурь, ураганов, цунами.
В земной коре наблюдаются сотрясения и вибрации инфразвуковых частот от самых разнообразных источников, в том числе от взрывов обвалов и транспортных возбудителей.
Для инфразвука характерно малое поглощение в различных средах вследствие чего инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень далёкие расстояния. Это явление находит практическое применение при определении места сильных взрывов или положения стреляющего орудия. Распространение инфразвука на большие расстояния в море даёт возможность предсказания стихийного бедствия — цунами. Звуки взрывов, содержащие большое количество инфразвуковых частот, применяются для исследования верхних слоев атмосферы, свойств водной среды.
Инфразвук человек не слышит, однако ощущает; он оказывает разрушительное действие на организм человека. Высокий уровень инфразвука вызывает нарушение функции вестибулярного аппарата, предопределяя головокружение, головную боль. Снижается внимание, работоспособность. Возникает чувство страха, общее недомогание. Существует мнение, что инфразвук сильно влияет на психику людей. Все механизмы, которые работают при частотах вращения меньше 20 об/с, излучают инфразвук. При движении автомобиля со скоростью более 100 км/час он является источником инфразвуки, который возникает за счет срыва воздушного потока с его поверхности. В машиностроительной отрасли инфразвук возникает при работе вентиляторов, компрессоров двигателей внутреннего сгорания, дизельных двигателей. Согласно действующим нормативным документам уровни звукового давления в октавных полосах со среднегеометрическими частотами 2, 4, 8, 16, Гц должен быть не больше 105 дБ., а для полос с частотой 32 Гц не более 102 дБ. Благодаря большой длине инфразвук распространяется в атмосфере на большие расстояния. Практически невозможно остановить инфразвук при помощи строительных конструкций на пути его распространения. Неэффективны также средства индивидуальной зашиты. Действенным средством защиты является снижение уровня инфразвука в источнике его образования. Среди таких мероприятий можно выделить следующие:- увеличение частот вращения валов до 20 и больше оборотов в секунду;- повышение жесткости колеблющихся конструкций больших размеров; - устранение низкочастотных вибраций: - внесение конструктивных изменений в строение источников, что позволяет перейти т области инфразвуковых колебаний в область звуковых; в этом случае их снижение может быть достигнуто применением звукоизоляции и звукопоглощения.
Основные источники инфразвуковых волн
Развитие промышленного производства и транспорта привело к значительному увеличению источников инфразвука в окружающей среде и возрастанию интенсивности уровня инфразвука.
Основные техногенные источники инфразвуковых колебаний в городах приведены в таблице.
Источник инфразвука Характерный частотный
диапазон инфразвука Уровни инфразвука
Автомобильный транспорт Весь спектр инфразвукового диапазона Снаружи 70-90 дБ, внутри до 120 дБ
Железнодорожный транспорт и трамваи 10-16 Гц Внутри и снаружи от 85 до 120 дБ
Промышленные установки аэродинамического и ударного действия 8-12 Гц До 90-105 дБ
Вентиляция промышленных установок и помещений, то же в метрополитене 3-20 Гц До 75-95 дБ
Реактивные самолеты Около 20 Гц Снаружи до 130 дБ
Ультразвук - упругие волны высокой частоты, которым посвящены специальные разделы науки и техники. Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до нескольких миллиардов герц. Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно
Человеческое ухо не воспринимает ультразвук, однако, некоторые животные, например, летучие мыши, могут воспринимать и издавать ультразвук. Частично воспринимают ультразвук грызуны, кошки, собаки, киты, дельфины. Ультразвуковые колебания возникают при работе моторов автомобилей, станков и ракетных двигателей. В практике для получения ультразвука обычно применяют электромеханические генераторы ультразвука, действие которых основано на способности некоторых материалов изменять свои размеры под действием магнитного (магнитострикционные генераторы) или электрического поля (пьезоэлектрические генераторы), издавая при этом звуки высокой частоты. Из-за большой частоты (малой длины волны) ультразвук обладает особыми свойствами.
Он сильно поглощается газами и слабо жидкостями. В жидкости под воздействием ультразвука образуются пустоты в виде мельчайших пузырьков с кратковременным возрастанием давления внутри них. Кроме того, ультразвуковые волны ускоряют протекание процессов диффузии (взаимопроникновения двух сред друг в друга),. существенно влияют на растворимость вещества и в целом на ход химических реакций. Эти свойства ультразвука и особенности его взаимодействия со средой обусловливают его широкое техническое и медицинское использование.
Впервые идея практического использования ультразвука возникла, как известно, в первой половине прошедшего века в связи с разработкой методов и приборов для обнаружения в глубине моря различных объектов: подводных лодок, рифов, подводных частей айсбергов и т.д. Это было вызвано прежде всего гибелью в 1912 г. "Титаника" и начавшимся участием подводных лодок в военных операциях во время первой мировой войны.
Низкочастотные ультразвуковые колебания хорошо распространяются в воздухе. Биологический эффект воздействия их на организм зависит от интенсивности, длительности воздействия и размеров поверхности тела, подвергаемой действию ультразвука. Длительное систематическое влияние ультразвука, распространяющегося в воздухе, вызывает функциональные нарушения нервной, сердечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов. У работающих на ультразвуковых установках отмечают выраженную астению, сосудистую гипотонию, снижение электрической активности сердца и мозга. Изменения ЦНС в начальной фазе проявляются нарушением рефлекторных функций мозга (чувство страха в темноте, в ограниченном пространстве, резкие приступы с учащением пульса, чрезмерной потливостью, спазмы в желудке, кишечнике, желчном пузыре). Наиболее характерны вегетососудистая дистония с жалобами на резкое утомление, головные боли и чувство давления в голове, затруднения при концентрации внимания, торможение мыслительного процесса, на бессонницу.
Контактное воздействие высокочастотного ультразвука на руки приводит к нарушению капиллярного кровообращения в кистях рук, снижению болевой чувствительности, т. е. развиваются периферические неврологические нарушения. Установлено, что ультразвуковые колебания могут вызывать изменения костной структуры с разрежением плотности костной ткани.