
- •Методические указания и задания к домашним контрольным работам по химии
- •Содержание.
- •Введение.
- •Образец оформления титульного листа.
- •Образец оформления рабочей страницы.
- •Методические указания и задания к контрольной работе: Классы неорганических соединений.
- •1.Методы получения неорганических соединений.
- •2. Расчеты по уравнениям реакций и химическим формулам.
- •2. Оксиды.
- •3. Кислоты.
- •4. Основания.
- •5. Соли.
- •Кислота Анион
- •6. Амфолиты.
- •7. Комплексные соединения.
- •Комплексный ион (заряженный комплекс) – сложная частица, состоящая
- •8. Реакции ионного обмена.
- •9. Оформление и порядок сдачи контрольной работы.
- •2.Задания по контрольной работе «Классы неорганических соединений».
- •1. Методические указания.
- •1. Общие положения.
- •2. Термохимические расчёты.
- •В термохимических расчётах теплоты реакций, как правило, определяются для стандартных условий, для которых формула (2.1) приобретает вид:
- •3. Энергия Гиббса химической реакции.
- •4. Химическая кинетика.
- •5. Химическое равновесие.
- •6. Смещение химического равновесия.
- •2.Задания к контрольной работе «Закономерности химических процессов».
- •2.Строение электронных оболочек атомов. (Задачи №№ 0120)
- •2.1.Квантовые числа.
- •2.2. Принцип Паули. Электронная ёмкость атомной орбитали, энергетических подуровней и энергетических уровней.
- •2.3. Электронные формулы атомов.
- •2.4. Правило Хунда.
- •3. Периодическая система химических элементов д.И. Менделеева. (Задачи №№ 2140)
- •3.1. Связь между строением атомов и периодической системой химических элементов.
- •3.2. Периодическое изменение окислительно-восстановительных свойств элементов.
- •4. Химическая связь.
- •4.1. Метод валентных связей (метод вс). (Задачи №№ 4180)
- •4.2. Метод молекулярных орбиталей (метод мо). (Задачи №№ 81100)
- •2.Задания к контрольной работе «Строение вещества».
- •Методические указания и задания к контрольной работе по химии: «Растворы электролитов».
- •1. Растворы и их концентрация.
- •2. Растворы электролитов.
- •3. Реакции ионного обмена.
- •4. Гидролиз солей.
- •4.1. Гидролиз солей сильных оснований и слабых кислот.
- •4.2. Гидролиз солей слабых оснований и сильных кислот.
- •4.3. Гидролиз солей сильных оснований и сильных кислот.
- •2.Задания к контрольной работе «Растворы электролитов».
- •Методические указания и задания к контрольной работе по химии : «Окислительно-восстановительные процессы».
- •Основные понятия.
- •2. Составление уравнений окислительно-восстановительных реакций.
- •2.1. Метод электронных уравнений.
- •2.2. Метод электронно-ионных уравнений.
- •3. Гальванический элемент.
- •4. Электролиз.
- •2.Задания к контрольной работе «Окислительно-восстановительные процессы».
- •Термодинамические характеристики химических соединений и простых веществ.
- •Стандартные электродные потенциалы окислительно-восстановительных пар.
- •Растворимость солей и оснований в воде.
- •Варианты и номера задач контрольных заданий
3. Гальванический элемент.
(задачи №№ 61 – 80)
Гальванический элемент представляет собой двухэлектродную систему с самопроизвольно протекающим электрохимическим процессом. В гальваническом элементе происходит самопроизвольное превращение химической энергии в электрическую.
В контрольной работе рассматриваются гальванические элементы, состоящие из двух металлических электродов, каждый из которых включает металлический проводник электронов, погруженный в раствор соли того же металла. Окислительно-восстановительная пара таких электродов образована из окислителя – катионов металла Men+ и соответствующего восстановителя – атомов металла Ме: Men+/Me.
Электрическая цепь гальванических элементов данного типа состоит из внешнего и внутреннего участков. Внешний участок цепи посредством того или иного проводника соединяет металлические электроды; во внешней цепи электроды замыкаются на потребителя электрического тока или на электроизмерительный прибор. Внутренний участок цепи соединяет растворы солей электродов посредством жидкостного мостика, заполненного насыщенным раствором KCl и агар-агаром.
Характер электродных процессов в гальваническом элементе определяется значениями электродных потенциалов. Окисление протекает на поверхности металлического проводника электрода, содержащего наиболее сильный восстановитель, т.е. анодом является электрод с меньшим значением электродного потенциала; электрод с большим значением электродного потенциала является катодом. Соответственно относительным величинам электродных потенциалов анод в гальванических элементах маркируется знаком “”, катод – знаком “+”.
Следует иметь в виду, что для металлических электродов величина электродного потенциала зависит от концентрации катионов металла. Эта зависимость выражается формулой Нернста:
E(Men+/Me)=Eo(Men+/Me)+(0,059/n)lg C(Men+) (3.1)
где C(Men+) – молярная концентрация катионов металла, n – число электронов, Eo(Men+/Me) – стандартный электродный потенциал металлического электрода, E(Men+/Me) – электродный потенциал электрода при концентрации катионов металла C(Men+).
Для представления гальванических элементов используется схематическая форма записи, которая начинается обозначением анода и заканчивается обозначением катода; в схеме гальванического элемента принято указывать число электронов, переходящих во внешней цепи от анода к катоду и далее из проводника катода к окислителю катода. Так гальванический элемент, состоящий из двух металлических электродов MeIn+/MeI и MeIIn+/MeII, в котором MeIn+/MeI - анод (А), а MeIIn+/MeII – катод (К), записывается:
|¯¯¯¯¯¯¯¯ ne ¯¯¯¯¯¯¯¯↓
А MeI/MeIn+//MeIIn+/MeII+К (3.2)
↑______|
Разность электродных потенциалов гальванического элемента назывется его электродвижущей силой (ЭДС). В соответствии с направлением самопроизвольного перехода электронов в гальваническом элементе его ЭДС – Е определяется как разность электродных потенциалов катода - Ек и анода - Еа:
Е=Ек – ЕА (3.3)
Для гальванического элемента, записанного в (3.2), ЭДС равна: Е= Е(MeIIn+/MeII) - Е(MeIn+/MeI).
Пример 3.1. Металлический проводник, иготовленный из кобальта, погружен в 0,01М раствор Co(NO3)2. Рассчитать величину электродного потенциала этого электрода.
Для данного электрода, пользуясь таблицей стандартных электродных потенциалов, подобрать анод и катод. Записать схемы гальванических элементов с выбранными электродами. Для каждого гальванического элемента составить уравнения электродных процессов и уравнение электрохимического процесса, определить значение ЭДС, считая электродные потенциалы выбранных электродов равными их стандартным значениям, и рассчитать величину стандартной ЭДС.
Окислительно-восстановительная пара рассматриваемого электрода записывается: Со2+/Со.
По формуле (3.1) рассчитываем величину электродного потенциала.
Е(Со2+/Со)=Ео(Со2+/Со)+(0,059/n)lgC(Со2+)=-0,28+(0,059/2)lg0,01=-0,28-0,059=-0,339В.
По отношению к данному электроду анодом будет являться любой металлический электрод с меньшим значением электродного потенциала, например, цинковый электрод Zn2+/Zn, стандартный электродный потенциал которого равен: Ео(Zn2+/Zn)=-0,76В. В соответствии с (3.2) для выбранного электрода записываем схему полученного гальванического элемента.
|¯¯¯¯ 2e ¯¯¯¯¯¯¯↓
А Zn/Zn2+// Со2+/Со +К
↑_____|
Записываем уравнения электродных процессов, суммируя которые получим уравнение электрохимического процесса, протекающего в рассматриваемом гальваническом элементе.
Zn0=Zn2++2е – уравнение анодного окисления.
Со2++2е=Со0 – уравнение катодного восстановления.
Zn0 + Со2+= Zn2++ Со0 – уравнение электрохимического процесса.
По формуле (3.3) определяем ЭДС.
Е=Ек – ЕА= Е(Со2+/Со) - Ео(Zn2+/Zn)=-0,339-(-0,76)=0,421В.
Для расчёта стандартной ЭДС используем табличные значения стандартных электродных потенциалов.
Ео= Ео(Со2+/Со) - Ео(Zn2+/Zn)=-0,28-(-0,76)=0,48В.
По отношению к электроду Со2+/Со в качестве катода можно использовать любой электрод с большим электродным потенциалом, например медный электрод Cu2+/Cu, стандартный электродный потенциал которого равен: Ео(Cu2+/Cu)=0,34В. Записываем схему гальванического элемента с выбранным катодом.
|¯¯¯¯ 2e ¯¯¯¯¯¯¯↓
А Со/Со2+// Cu2+/Cu +К
↑_____|
Записываем уравнения электродных процессов и уравнение электрохимического процесса, протекающего в данном гальваническом элементе.
Со0=Со2++2е – уравнение анодного окисления.
Cu2++2e=Cu0 – уравнение катодного восстановления.
Со0+Cu2+=Co2++Cu0 - уравнение электрохимического процесса.
По формуле (3.3) определяем величину ЭДС.
Е=Ек – ЕА= Ео(Cu2+/Cu) - Е(Со2+/Со)=0,34 – (-0,339)=0,679В.
Стандартную ЭДС, как и для предыдущего гальванического элемента, рассчитываем по табличным значениям стандартных электродных потенциалов.
Ео=Ео(Cu2+/Cu) - Ео(Со2+/Со)=0,34 – (-0,28)=0,62В.