Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Балякин В.Б., Васин В.Н. ДЕТАЛИ МАШИН.doc
Скачиваний:
37
Добавлен:
09.12.2018
Размер:
3.53 Mб
Скачать

Циклы нагружения

Детали машин обычно подвергаются действию напряжений, циклически меняющихся во времени. При этом возникают микроскопические трещины, приводящие к усталостной поломке деталей. В общем виде кривая, характеризующая изменение напряжений во времени, представлена на рис. 2.3.

Большое значение для работы детали имеют верхние и нижние пределы напряжений,

– среднее или условно постоянное напряжение,

– амплитудное напряжение.

Важным параметром является коэффициент асимметрии цикла .

В технике встречается три основных случая нагружения:

  1. Статическое нагружение (рис. 2.4).

О

Рис. 2.4

бозначение [ I ] – первый род нагрузки. R = +1.

Для хрупких материалов принимают

где и - пределы прочности при растяжении и сдвиге.

Для пластичных материалов принимают

где и - пределы текучести.

  1. Отнулевой (пульсирующий цикл) (рис. 2.5).

Обозначение [ II ] –второй род нагрузки.

Рис. 2.5

- предел усталости при отнулевом цикле.

  1. Знакопеременный симметричный цикл (рис. 2.6).

О

Рис. 2.6

бозначение [ III ] – третий род нагрузки.

R = -1.

– предел усталости при симметричном цикле.

,

где -- коэффициент чувствительности материала к асимметрии цикла.

Коэффициент зависит от материала и его термообработки.

Для нормализованных и улучшенных сталей при в>800 МПа принимают = 0,3…0,4 и = 0,4…0,5.

Определение коэффициента запаса прочности Коэффициент запаса прочности (безопасности)

>1, где ррасчётное напряжение.

Существует дифференциальный метод (Одинга) и табличный метод определения коэффициентов запаса прочности.

1. Дифференциальный метод определяет коэффициент запаса прочности как произведение частных коэффициентов, отражающих:

  1. достоверность определения расчётных нагрузок S1=1…1,5;

б) однородность механических свойств материалов S2=1,2…2;

в) специфические требования безопасности S3=1…1,5.

Общий коэффициент запаса прочности [S]=S1· S2· S3.

2. Таблицы существуют для типовых деталей каждой отрасли.

Передачи Основные понятия. Классификация механических передач

Любая машина состоит из трёх основных элементов – двигателя, передаточного механизма, исполнительного механизма.

Устройства для передачи энергии и движения от одного агрегата другому или от одной части машины к другой называются передачами. Передачи подразделяются на механические, электрические, пневматические, гидравлические и комбинированные. В курсе «Детали машин» изучаются только механические передачи. Введение передач обусловлено следующими причинами:

  1. Требуемые скорости исполнительного механизма, как правило, не совпадают с оптимальными скоростями двигателя;

  2. Скорость движения исполнительного механизма необходимо регулировать, что не всегда возможно сделать двигателем;

  3. Двигатели обычно выполняются для равномерного вращательного движения, а исполнительные механизмы могут требовать иной вид движения.

Передачи по принципу работы разделяются:

а) передачи трением с непосредственным контактом тел (фрикционные) и с гибкой связью (ременные);

б) передачи зацеплением с непосредственным контактом (зубчатые и червячные) и с гибкой связью (цепные).

По характеру изменения скорости:

а) понижающие (редуктора) и повышающие (мультипликаторы);

б) регулируемые и нерегулируемые.

Регулируемые разделяются на:

а) со ступенчатым регулированием;

б) с бесступенчатым (плавным) регулированием.

По взаимному положению валов:

а) с параллельными осями;

б) с пересекающимися осями;

в) с перекрещивающимися осями.

Устройство, содержащее одну или несколько зубчатых или червячных передач, установленное в жёстком корпусе и предназначенное для понижения частоты вращения и увеличения крутящего момента, называется редуктором.