Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OTVYeT (Автосохраненный).docx
Скачиваний:
12
Добавлен:
04.12.2018
Размер:
1.26 Mб
Скачать

Тригонометрическая и показательная формы

Если вещественную x и мнимую y части комплексного числа выразить через модуль r = | z | и аргумент (, ), то всякое комплексное число z, кроме нуля, можно записать в тригонометрической форме

Также может быть полезна показательная форма записи комплексных чисел, тесно связанная с тригонометрической через формулу Эйлера:

где  — расширение экспоненты для случая комплексного показателя степени.

Отсюда вытекают следующие широко используемые равенства:

4.Умножение комплексных чисел в тригонометрической форме

Теорема. (Об умножении комплексных чисел в тригонометрической форме записи.)

 Пусть , где  и , где  – два произвольных комплексных числа записанных в тригонометрической форме. Тогда

.                 (13)

   Доказательство.

, ч.т.д.

Теорема доказана.

Отсюда вытекает правило умножения комплексных чисел в тригонометрической форме записи.

Для того, чтобы перемножить два комплексных числа в тригонометрической форме записи нужно перемножить их модули, а аргументы сложить.

5. Сопряженное комплексное число

Если комплексное число z = x + iy, то число называется сопряжённым (или комплексно сопряжённым) к z (обозначается также z * ). На комплексной плоскости сопряжённые числа получаются зеркальным отражением друг друга относительно вещественной оси. Модуль сопряжённого числа такой же, как у исходного, а их аргументы отличаются знаком.

Переход к сопряжённому числу можно рассматривать как одноместную операцию; перечислим её свойства.

  • (сопряжённое к сопряжённому есть исходное).

Обобщение: , где p(z) — произвольный многочлен с вещественными коэффициентами.

6.Определение матрицы над полем

Ма́трица  — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых или комплексных чисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.

7.единичная матрица

8,9.определитель матрицы над полем

10.определитель треугольной матрицы

11.определитель произведения матрицы

12.определени обратной матрицы

Обра́тная ма́трица — такая матрица A-1, при умножении на которую исходная матрица A даёт в результате единичную матрицу E:

Квадратная матрица обратима тогда и только тогда, когда она невырожденная, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует.

Свойства обратной матрицы

  • , где  обозначает определитель.

  •  для любых двух обратимых матриц A и B.

  •  где * T обозначает транспонированную матрицу.

  •  для любого коэффициента  .

  • Если необходимо решить систему линейных уравнений Ax = b, (b — ненулевой вектор) где x — искомый вектор, и если A - 1 существует, то x = A − 1b. В противном случае либо размерность пространства решений больше нуля, либо их нет вовсе.

Возьмём две матрицы: саму A и единичную E. Приведём матрицу A к единичной матрице методом Гаусса—Жордана. После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной A−1.

При использовании метода Гаусса первая матрица будет умножаться слева на одну из элементарных матриц Λi (трансвекцию или диагональную матрицу с единицами на главной диагонали, кроме одной позиции):

.

.

Вторая матрица после применения всех операций станет равна Λ, то есть будет искомой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]