
- •1.Понятие комплексного числа, его вещественная и мнимая часть
- •2.Модуль и аргумент комплексного числа.
- •3. Геометрическая модель
- •Тригонометрическая и показательная формы
- •4.Умножение комплексных чисел в тригонометрической форме
- •5. Сопряженное комплексное число
- •6.Определение матрицы над полем
- •Свойства обратной матрицы
- •13.Невырожденная матрица
- •14.Элементарные преобразования матрицы
- •15. Определение векторного пространства
- •16.Линейная выражаемость вектора, линейная оболочка системы векторов.
- •17.Подпространство
- •18.Линейно-зависимые и линейно-независимые системы векторов
- •Свойства
- •19.Базис системы векторов
- •20. Ранг системы векторов, размерность подпространства
- •21. Основные свойства базиса в конечномерном пространстве
- •22.Координаты вектора.
- •23. Формула преобразования координат вектора
- •24.Сумма и пересечение подпространств.
- •25Определение прямой суммы подпространств
- •27.Линейное преобразование над векторным пространством
- •28.Матрицы линейного преобразования
- •29.Изменение матрицы линейного преобразования при замене базиса
- •30.Собственные вектор и значения линейнго преобразования
- •40.Пространство линейных функционалов (сопряженное пространство).
- •Линейно-сопряжённое пространство — определение
- •Свойства
- •Обозначения
- •41.Определение преобразования, сопряженное к данному преобразованию
- •42.Матрица сопряженного преобразования.
- •43.Определение нормального преобразования.
- •44.Теорема о диагонализуемости нормального оператора.
- •45.Определение симметричных (эрмитовы) и кососимметричных (косоэрмитовых) преобразования.
- •Примеры
- •46.Канонический вид матрицы симметричного преобразования.
- •47.Определение ортогонального (унитарного) преобразования.
- •Свойства
- •Размерность два
- •48.Изометричные преобразования, их связь с унитарными (ортогональными).
- •49.Матрица перехода от одного ортонормированного базиса к другому.
- •51.Определение билинейной формы.
- •52.Матричное представление билинейной формы.
- •53.Определение квадратичной формы.
- •Определения
- •Связанные определения
- •Свойства
- •54.Нормальный вид квадратичной формы над полем действительных чисел.
- •55.Закон инерции квадратичных форм.
- •56.Положительно и неотрицательно определенные квадратичные формы над полем действительных чисел.
- •57.Критерий Сильвестра положительной определенности квадратичной формы.
1.Понятие комплексного числа, его вещественная и мнимая часть
Определение. Комплексным числом называется выражение вида a + bi, где a и b – произвольные вещественные числа, а i – специальный символ.
Вещественные числа а и b называют соответственно вещественной и мнимой частями комплексного числа z = a + bi. Комплексное число, у которого мнимая часть равна нулю, т. е. комплексное число вида a + 0i записывают в виде а и отождествляют с вещественным числом а. Обозначение: a = Re z, b = Im z.
Поле комплексных чисел можно понимать как расширение поля вещественных чисел, в котором многочлен z2 + 1 имеет корень.
2.Модуль и аргумент комплексного числа.
2. Модулем (абсолютной величиной) комплексного числа называется длина радиус-вектора соответствующей точки комплексной плоскости (или, что то же, расстояние между точкой комплексной плоскости, соответствующей этому числу, и началом координат).
Модуль
комплексного числа z
обозначается | z
| и определяется выражением
.
Часто обозначается буквами
или
.
Если z
является вещественным
числом, то | z
| совпадает с абсолютной
величиной этого вещественного числа.
Для
любых
имеют
место следующие свойства модуля. :
1)
,
причём
тогда
и только тогда, когда
;;
2)
(неравенство
треугольника);
3)
;
4)
.
Из
третьего свойства следует
,
где
.
Данное свойство модуля вместе с первыми
двумя свойствами вводят на множестве
комплексных чисел структуру двумерного
нормированного
пространства над полем
.
5) Для пары комплексных чисел z1 и z2 модуль их разности | z1 − z2 | равен расстоянию между соответствующими точками комплексной плоскости.
Угол
(в
радианах) радиус-вектора
точки, соответствующей числу z,
называется аргументом
числа z
и обозначается
.
-
Из этого определения следует, что
;
;
.
-
Для комплексного нуля значение аргумента не определено, для ненулевого числа z аргумент определяется с точностью до 2kπ, где k — любое целое число.
-
Главным значением аргумента называется такое значение
, что
. Часто главное значение обозначается
. Главное значение аргумента обратного числа отличается знаком от аргумента исходного:
.
-
Модуль, аргумент, вещественная и мнимая части
3. Геометрическая модель
Геометрическое представление комплексного числа
Рассмотрим
плоскость с прямоугольной
системой координат. Каждому комплексному
числу
сопоставим
точку плоскости с координатами {x,y}
(а также радиус-вектор,
соединяющий начало координат с этой
точкой). Такая плоскость называется
комплексной.
Вещественные числа на ней занимают
горизонтальную ось, мнимая единица
изображается единицей на вертикальной
оси; по этой причине горизонтальная и
вертикальная оси называются соответственно
вещественной
и мнимой
осями.
Часто бывает удобно рассматривать на комплексной плоскости также полярную систему координат, в которой координатами точки являются расстояние до начала координат (модуль) и угол радиус-вектора точки (показанного синей стрелкой на рисунке) с горизонтальной осью (аргумент). Подробнее см. ниже.
В этом наглядном представлении сумма комплексных чисел соответствует векторной сумме соответствующих радиус-векторов. При перемножении комплексных чисел их модули перемножаются, а аргументы складываются. Если модуль второго сомножителя равен 1, то умножение на него геометрически означает поворот радиус-вектора первого числа на угол, равный аргументу второго числа. Этот факт объясняет широкое использование комплексного представления в теории колебаний, где вместо терминов «модуль» и «аргумент» используются термины «амплитуда» и «фаза».