
- •69. Интегрирование тригонометрических выражений с помощью тригонометрических подстановок.
- •70. Интегрирование простейших иррациональных функций.
- •71. Интегрирование некоторых иррациональных функций с помощью тригонометрических подстановок.
- •72. Некоторые интегралы, не выражающиеся в элементарных функциях.
- •74. Интегральные суммы. Определение определенного интеграла. Интегральные суммы.
- •79. Геометрическое применение определенного интеграла.
- •80. Понятие о несобственных интегралах.
- •63. Непосредственное интегрирование.
- •64. Метод интегрирования с помощью замены.
- •65. Метод интегрирования по частям.
- •66. Понятие дробно-рациональной функции. Простейшие рациональные дроби.
- •67. Правильные и неправильные дроби. Процесс деления и выделения целой части для неправильной дроби.
- •68. Разложение правильной дроби в сумму простейших дробей.
- •69. Интегрирование тригонометрических выражений с помощью тригонометрических подстановок.
- •III. Интегрирование выражений вида sin (αx) · sin (βx) , sin (αx) · cos (βx) , cos (αx) · cos (βx) .
- •Возрастание и убывание функции.
- •46Выпуклость и вогнутость функции.
- •Экстремумы функции.
- •46Асимптоты функции.
- •Виды асимптот графиков
- •Исследование функций и построение графиков.
- •61. Первообразная функции. Неопределенный интеграл.
- •39Применение дифференциала для приближенных вычислений.
- •Теорема Ферма.
- •41Теорема Ролля.
- •Геометрический смысл:Теорема утверждает, что если ординаты обоих концов гладкой кривой равны, то на кривой найдется точка, в которой касательная к кривой параллельна оси абсцисс.
- •Следствие
- •40Теорема Лагранжа.
- •Доказательство
- •Теорема Коши.
- •Доказательство
- •42Правило Лопиталя.
- •Примеры
- •36. Производная неявной функции.
- •45. Производная параметрически заданной функции.
- •37 Производные высших порядков.
- •38Определение дифференциала функций. Правила нахождения дифференциала.
- •38 Дифференциал сложной функции.
- •Инвариантность формы первого дифференциала.
- •37. Непрерывность основных элементарных функций. Точки разрыва и их классификации
- •27. Задачи, приводящие к понятию производной
- •28 Определение производной, ее геометрический и механический смысл
- •40. Касательная к кривой на плоскости
- •41. Зависимость между непрерывностью и дифференцируемостью функции.
- •27. Определение предела функции.
- •Определения
- •28. Бесконечно малые и бесконечно большие величины. Связь между ними.
- •29. Свойства бесконечно малых величин.
- •30. Односторонние пределы
- •23. Основные теоремы о пределах.
- •32. Раскрытие неопределенностей
- •25. Первый замечательный предел
- •26. Второй замечательный предел
- •35. Приращение аргумента и функции. Определение непрерывности функции в точке
- •36. Определение непрерывности функции на промежутке. Основные теоремы о непрерывных функциях
- •19. Угол между прямыми на плоскости.
- •21. Уравнение прямой, проходящей через две точки.
- •22. Расстояние от прямой до точки на плоскости.
- •21???. Определение функции. Область определения, способы задания функции.
- •25. Свойства функций.
- •26. Последовательности, определение предела последовательности.
- •9. Условия совместности и определенности систем линейных уравнений.
- •19. Теорема Кронекера-Капелли.
- •11. Решение системы n линейных уравнений с m неизвестными.
- •14. Решение систем линейных уравнений методом Гаусса.
- •4. Скалярное произведение векторов.
- •1. Расстояние между двумя точками. Коллинеарные вектора.
- •17. Деление отрезка в данном отношении.
- •15Матрицы. Действия с матрицами.
- •4. Разложение определителей по элементам строк и столбцов.
- •16. Понятие обратной матрицы.
- •Свойства обратной матрицы
- •17. Метод обратной матрицы решения систем линейных уравнений.
- •13 . Правило Крамера решения систем линейных уравнений.
- •Решение системы находим по формулам Крамера
- •19. Понятие ранга матрицы. Его нахождение.
39Применение дифференциала для приближенных вычислений.
Пусть нам известно значение функции y0=f(x0) и ее производной y0' = f '(x0) в точке x0. Покажем, как найти значение функции в некоторой близкой точке x.
Как мы уже выяснили приращение функции Δyможно представить в виде суммы Δy=dy+α·Δx, т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δy≈dyили Δy»f'(x0)·Δx.
Т.к., по определению, Δy = f(x) – f(x0), то f(x) – f(x0)≈f'(x0)·Δx.
Откуда f(x) ≈ f(x0) + f'(x0)·Δx
Примеры.
-
y = x2 – 2x. Найти приближенно, с помощью дифференциала, изменение y (т.е. Δy), когда x изменяется от 3 до 3,01.
Имеем Δy≈dy=f'(x)·Δx.
f'(x)=2x – 2 ,f'(3)=4, Δx=0,01.
Поэтому Δy ≈ 4·0,01 = 0,04.
-
Вычислить приближенно значение функции
в точке x = 17.
Пусть
x0=
16. Тогда Δx
= x
– x0=
17 – 16 = 1,
,
.
Таким
образом,
.
-
Вычислить ln 0,99.
Будем рассматривать это значение как частное значение функции y=lnx при х=0,99.
Положим x0 = 1. Тогда Δx = – 0,01, f(x0)=0.
,
f
'(1)=1.Поэтому f(0,99)
≈ 0 – 0,01 = – 0,01.
-
Теорема Ферма.
Если
функция
имеет локальный экстремум в точке
и производная
существует,
то
.
Доказательство:
Предположим
для определенности, что
— локальный максимум.
Тогда
при
всех
,
достаточно близких к
.
Следовательно,
при всех
,
достаточно близких к нулю. Имеем, с одной
стороны,
потому что числитель и знаменатель оба неотрицательны. С другой стороны,
потому
что здесь и числитель, и знаменатель
неположительны. Следовательно,
.
Упражнение.
Провести
доказательство Теоремы Ферма для случая,
когда
имеет
локальный минимум в точке
.
Следующие два примера показывают, что для нахождения локальных экстремумов недостаточно найти точки, в которых производная обращается в нуль.
Пример
1.
.
Имеем
,
откуда
,
но, на самом деле, в нуле функция экстремума
не имеет.
Пример
2.
имеет
локальный минимум в нуле, хотя
не
существует.
Определение.
Пусть точка
принадлежит
области определения функции
.
Точка
называется
критической
точкой функции
,
если производная
равна нулю или не существует.
Пример
3. Найти
критические точки функции
.
Решение:
используя
правило произведения, нетрудно найти,
что
, откуда находим две критические точки
и
.
Теперь теорему Ферма можно переформулировать более кратко.
Теорема (теорема Ферма в терминах критических точек). Функция может иметь
локальные экстремумы только в ее критических точках.
41Теорема Ролля.
(теорема о нуле производной) утверждает, что
Если функция, непрерывна на отрезке [a;b] и дифференцируема на интервале (a;b), принимает на концах этого интервала одинаковые значения, то на этом интервале найдётся хотя бы одна точка, в которой производная функции равна нулю.
Геометрический смысл:Теорема утверждает, что если ординаты обоих концов гладкой кривой равны, то на кривой найдется точка, в которой касательная к кривой параллельна оси абсцисс.