- •69. Интегрирование тригонометрических выражений с помощью тригонометрических подстановок.
- •70. Интегрирование простейших иррациональных функций.
- •71. Интегрирование некоторых иррациональных функций с помощью тригонометрических подстановок.
- •72. Некоторые интегралы, не выражающиеся в элементарных функциях.
- •74. Интегральные суммы. Определение определенного интеграла. Интегральные суммы.
- •79. Геометрическое применение определенного интеграла.
- •80. Понятие о несобственных интегралах.
- •63. Непосредственное интегрирование.
- •64. Метод интегрирования с помощью замены.
- •65. Метод интегрирования по частям.
- •66. Понятие дробно-рациональной функции. Простейшие рациональные дроби.
- •67. Правильные и неправильные дроби. Процесс деления и выделения целой части для неправильной дроби.
- •68. Разложение правильной дроби в сумму простейших дробей.
- •69. Интегрирование тригонометрических выражений с помощью тригонометрических подстановок.
- •III. Интегрирование выражений вида sin (αx) · sin (βx) , sin (αx) · cos (βx) , cos (αx) · cos (βx) .
- •Возрастание и убывание функции.
- •46Выпуклость и вогнутость функции.
- •Экстремумы функции.
- •46Асимптоты функции.
- •Виды асимптот графиков
- •Исследование функций и построение графиков.
- •61. Первообразная функции. Неопределенный интеграл.
- •39Применение дифференциала для приближенных вычислений.
- •Теорема Ферма.
- •41Теорема Ролля.
- •Геометрический смысл:Теорема утверждает, что если ординаты обоих концов гладкой кривой равны, то на кривой найдется точка, в которой касательная к кривой параллельна оси абсцисс.
- •Следствие
- •40Теорема Лагранжа.
- •Доказательство
- •Теорема Коши.
- •Доказательство
- •42Правило Лопиталя.
- •Примеры
- •36. Производная неявной функции.
- •45. Производная параметрически заданной функции.
- •37 Производные высших порядков.
- •38Определение дифференциала функций. Правила нахождения дифференциала.
- •38 Дифференциал сложной функции.
- •Инвариантность формы первого дифференциала.
- •37. Непрерывность основных элементарных функций. Точки разрыва и их классификации
- •27. Задачи, приводящие к понятию производной
- •28 Определение производной, ее геометрический и механический смысл
- •40. Касательная к кривой на плоскости
- •41. Зависимость между непрерывностью и дифференцируемостью функции.
- •27. Определение предела функции.
- •Определения
- •28. Бесконечно малые и бесконечно большие величины. Связь между ними.
- •29. Свойства бесконечно малых величин.
- •30. Односторонние пределы
- •23. Основные теоремы о пределах.
- •32. Раскрытие неопределенностей
- •25. Первый замечательный предел
- •26. Второй замечательный предел
- •35. Приращение аргумента и функции. Определение непрерывности функции в точке
- •36. Определение непрерывности функции на промежутке. Основные теоремы о непрерывных функциях
- •19. Угол между прямыми на плоскости.
- •21. Уравнение прямой, проходящей через две точки.
- •22. Расстояние от прямой до точки на плоскости.
- •21???. Определение функции. Область определения, способы задания функции.
- •25. Свойства функций.
- •26. Последовательности, определение предела последовательности.
- •9. Условия совместности и определенности систем линейных уравнений.
- •19. Теорема Кронекера-Капелли.
- •11. Решение системы n линейных уравнений с m неизвестными.
- •14. Решение систем линейных уравнений методом Гаусса.
- •4. Скалярное произведение векторов.
- •1. Расстояние между двумя точками. Коллинеарные вектора.
- •17. Деление отрезка в данном отношении.
- •15Матрицы. Действия с матрицами.
- •4. Разложение определителей по элементам строк и столбцов.
- •16. Понятие обратной матрицы.
- •Свойства обратной матрицы
- •17. Метод обратной матрицы решения систем линейных уравнений.
- •13 . Правило Крамера решения систем линейных уравнений.
- •Решение системы находим по формулам Крамера
- •19. Понятие ранга матрицы. Его нахождение.
23. Основные теоремы о пределах.
Теорема
1.
,
где С = const.
Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а.
Теорема2. ![]()
Доказательство этой теоремы будет приведено ниже.
Теорема3. ![]()
Следствие. ![]()
Теорема4.
при ![]()
Теорема
5. Если f(x)>0
вблизи точки х = а и
,
то А>0.
Аналогично определяется знак предела при f(x) < 0, f(x) ³ 0, f(x) £ 0.
Теорема
6. Если g(x) £ f(x) £ u(x)
вблизи точки х = а и
,
то и
.
Определение. Функция f(x) называется ограниченной вблизи точки х = а, если существует такое число М>0, что ïf(x)ï<M вблизи точки х = а.
Теорема 7. Если функция f(x) имеет конечный предел при х®а, то она ограничена вблизи точки х = а.
32. Раскрытие неопределенностей
Раскрытие
неопределённостей —
методы вычисления пределов функций,
заданных формулами, которые в результате
формальной подстановки в них предельных
значений аргумента теряют смысл, то
есть переходят в выражения типа:
,
,
,
,
,
,
по
которым невозможно судить о том,
существуют или нет искомые пределы, не
говоря уже о нахождении их значений,
если они существуют.
Самым мощным методом является правило Лопиталя, однако и оно не во всех случаях позволяет вычислить предел. К тому же напрямую оно применимо только ко второму и третьему из перечисленных видов неопределённостей, то есть отношениям, и чтобы раскрыть другие типы, их надо сначала привести к одному из этих.
Также для вычисления пределов часто используется разложение выражений, входящих в исследуемую неопределённость, в ряд Тейлора в окрестности предельной точки.
Для
раскрытия неопределённостей
видов
,
,
пользуются
следующим приёмом:
находят предел (натурального) логарифма выражения,
содержащего данную неопределённость.
В результате вид неопределённости
меняется. После нахождения предела от
него берут экспоненту.
25. Первый замечательный предел
Первым замечательным пределом называется предел
![]()
Теорема
2.14
Первый
замечательный предел равен
![]()
![]()
Следствия
26. Второй замечательный предел
Второй
замечательный предел — это формула
,
где e
= 2,718281828... — основание натуральных
логарифмов.
Следствия
-
для
, 
35. Приращение аргумента и функции. Определение непрерывности функции в точке
Рассмотрим функцию y = f(x). Пусть x0D(f) – фиксированная точка; xD(f) – произвольная точка.
Определения. 1) x = x – x0 называется приращением аргумента в точке x0.
Очевидно, что если x > x0, то x > 0, а если x < x0, то x < 0
2) f(x0) = f(x) – f(x0) = f(x0 + x) – f(x0) называется приращением функции в точке x0
Непрерывность функции в точке
Пусть функция
у=ƒ(х) определена в точке хо и
в некоторой окрестности этой точки.
Функция y=f(x) называется непрерывной в
точке х0,
если существует предел функции в этой
точке и он равен значению функции в этой
точке, т. е.
(1)
Равенство (1) означает выполнение трех условий: 1) функция ƒ (х) определена в точке x0 и в ее окрестности; 2) функция ƒ(х) имеет предел при х→хо; 3) предел функции в точке хо равен значению функции в этой точке, т. е. выполняется равенство (1).
Так как
то
равенство (19.1) можно записать в виде
(2)
Это означает, что при нахождении предела непрерывной функции ƒ(х) можно перейти к пределу под знаком функции, то есть β функцию ƒ(х) вместо аргумента х подставить его предельное значение хо.
