Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
optics.doc
Скачиваний:
29
Добавлен:
27.11.2018
Размер:
1.24 Mб
Скачать

5.2 Описание лабораторной установки

Рис. 7

1. В случае использования установки для наблюдения полос равной толщины: Источником света служит полупроводниковый (GaAs) лазер (λ=650 нм). Излучение от полупроводникового лазера 1 падает на коллиматор 2, закрепленный на экране 3. Расширенный коллиматором пучок лучей, освещает рабочую поверхность интерференционного объекта 4, установленного на держателе D 75 х 15 в вертикальном юстировочном модуле 5. Объект устроен таким образом, что между двумя плоскопараллельными пластинками имеется клиновидный воздушный зазор. Многократно отражаясь от пластин, лучи интерферируют. На экране 6 при этом будет наблюдаться картина чередующихся темных и светлых полос. Для измерений, на экране закрепляется масштабированный бумажный экран. Измерив ширину и период полос можно рассчитать угол клиновидного зазора.

2. Наблюдение интерференционных картин от объекта МОЛ – 1(2): В вертикальный юстировочный модуль 2 устанавливается объект МОЛ – 1(2) в оправе. При этом экран с отверстием 3 и интерференционный объект 4 вынимаются из рейтеров. Параллельный световой пучок освещает фотолитографический тест-объект МОЛ-1 или МОЛ-2, который представляет собой тонкий стеклянный диск с непрозрачным покрытием, на котором по кругу параллельно радиусу нанесены пары щелей с разными расстояниями между ними. Пары щелей равной ширины объединены в группы по четыре. В пределах групп изменяются расстояния между щелями. Свет, интерферируя на паре щелей падает на экран, на котором и проводятся измерения периода интерференционной картины (Δх).

Порядок выполнения работы

Интерференция в воздушном зазоре. Полосы равной толщины.

1. Включить полупроводниковый лазер. Вращением юстировочных винтов направить луч лазера по центру отверстия в экране.

2. Установить микрообъектив в магнитной оправе с обратной стороны экрана и подвижками его в поперечных направлениях добиться наиболее полного освещения интерференционного объекта.

3. Небольшим поворотом винтов 6 (см. рис.2) отрегулировать толщину зазора между стеклянными пластиками в объекте. ВНИМАНИЕ! Категорически запрещается затягивать винты, т.к. это может привести к появлению сколов на пластинках. Вращение винта должно быть плавным без дополнительных усилий в конечном положении. Для появления клиновидного зазора следует ослабить 1 или 2 винта.

Интерференционную картину можно предварительно визуально наблюдать в отраженном (под углом ~ 45-60°) или проходящем свете от настольной лампы или иного светильника (см. рис.7а). Более точную регулировку следует проводить в лазерном пучке, добиваясь получения прямых линий, как показано на рис. 7б, 7в. Для ориентации полос вдоль линий шкалы масштабной сетки следует повернуть оправу с объектом вокруг оптической оси до нужного положения.

  1. Измерить координаты максимумов интерференционных полос не менее трех соседних порядков. Координаты следует измерять с точностью не менее ± 1 мм. Полученные данные занести в Таблицу 1.

  2. Для каждой пары вычислить период полос B′ij = и усреднить результаты. Полученное среднее значение использовать для расчета угла воздушного клина по формулам (6) и (7).

Таблица 1.

Линейные координаты полос (мм)

ie координаты пс

лос (мм)

В1׳

В2׳

В3׳

Вср׳

1.

2.

3.

4.

Опыт Юнга.

1. Добиться четкого изображения интерференционных полос.

2. Провести несколько (около пяти) измерений ширины интерференционной полосы для каждой из пар щелей. Полученные данные усреднить. Данные занести в Таблицу 2, где Δ - усредненное значение ширины интерференционной полосы.

Таблица 2.

Номер пары щелей

пары щеле1

i

Δ

3. По результатам измерений, зная величину L (она равна расстоянию между экраном и фотолитографическим объектом) и длину волны излучения полупроводникового лазера (λ=650 нм), рассчитать расстояние между щелями по формуле:

.

Получится по одному значению d для каждой пары щелей из группы. Полученные результаты занести в Таблицу 3.

Таблица 3.

№ пары щелей

d (мкм)

а)

б)

в)

Рис. 7. Примеры визуально наблюдаемых интерференционных полос (а – непосредственно на объекте, б и в – на экране для различных углов клина).

    1. Контроль степени усвоения материала.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]