- •1. Электрические цепи постоянного тока
- •Элементы электрической цепи постоянного тока
- •1.2. Электрический ток, эдс и напряжение
- •1.3. Активные и пассивные элементы электрических цепей. Закон Ома
- •1.4. Источник эдс и источник тока
- •1.5. Законы Кирхгофа
- •1.6. Использование законов Кирхгофа для расчета электрических цепей
- •1.7. Эквивалентные преобразования электрических цепей
- •1.7.1. Последовательное соединение элементов.
- •1.7.2. Параллельное соединение элементов.
- •1.7.3. Смешанное соединение резистивных элементов.
- •1.7.4. Эквивалентные преобразования резистивных элементов треугольником и звездой.
- •1.8. Использование метода узловых потенциалов
- •1.9. Метод контурных токов
- •1.10. Работа и мощность постоянного тока. Закон Джоуля – Ленца
- •2. Электрические цепи переменного тока
- •2.1. Генерация синусоидальной эдс. Основные величины, характеризующие переменный ток
- •2.2. Представление синусоидальных величин аналитически, графически, вращающимися векторами, комплексными числами
- •2.3. Цепь переменного тока с активным сопротивлением
- •2.4. Цепь переменного тока с индуктивностью
- •2.5. Цепь переменного тока с ёмкостью
- •2.6. Цепь переменного тока с активным сопротивлением и индуктивностью
- •2.7. Цепь переменного тока с активным сопротивлением и ёмкостью
- •2.8. Неразветвлённая цепь переменного тока с активным сопротивлением, индуктивностью и ёмкостью. Резонанс напряжений
- •2.9. Разветвленная цепь однофазного переменного тока. Резонанс токов
- •2.10. Колебательный lc - контур переменного тока
- •2.11. Коэффициент мощности
- •3. Трёхфазные электрические цепи
- •3.1. Преимущество трёхфазного тока. Принцип получения трёхфазной эдс
- •3.2.2. Отсутствие нулевого провода
- •3.3. Обрыв фазы и короткое замыкание фазы без нулевого провода при соединении источников энергии и потребителей звездой
- •3.3.1. Обрыв фазы a
- •3.3.2. Короткое замыкание фазы a
- •3.4. Соединение источников и приёмников электроэнергии треугольником. Соотношения между фазными и линейными напряжениями и токами при симметричной и несимметричной нагрузках
- •3.5. Обрыв фаз и обрыв линейного провода при соединении источников и потребителей треугольником
- •3.5.1. Обрыв фазы ab
- •3.5.2. Обрыв фаз ab и bc
- •3.5.3. Обрыв линейного провода
- •3.6. Мощность трёхфазной цепи
- •3.7. Соотношения активных мощностей при симметричной нагрузке и при соединении звездой и треугольником
- •3.8. Вращающееся магнитное поле трёхфазной системы переменного тока
- •4. Трансформаторы
- •4.1. Назначение, области применения, устройство и принцип действия однофазного трансформатора
- •4.2. Режимы работы трансформатора. Коэффициент полезного действия трансформатора
- •4.3. Трёхфазные трансформаторы
- •4.4. Измерительные трансформаторы
- •5. Электрические измерения
- •5.1. Методы измерения. Погрешности измерения и классы точности
- •5.2. Приборы магнитоэлектрической системы
- •5.3. Приборы электромагнитной системы
- •5.4. Приборы электродинамической системы
- •5.5. Цифровые измерительные приборы
- •5.6. Логометры
- •5.7. Индукционные приборы
- •5.8. Измерение мощности в трёхфазных цепях
- •5.9. Омметры. Мегомметры
- •10. Измерение ёмкости и индуктивности
- •6. Электрические машины постоянного тока
- •6.1. Устройство и принцип действия генератора постоянного тока
- •6.2. Генераторы постоянного тока независимого и параллельного
- •6.3. Генераторы постоянного тока последовательного и смешанного возбуждений и их основные характеристики
- •6.4. Принцип действия электродвигателя постоянного тока
- •6.5. Электродвигатели постоянного тока параллельного возбуждения
- •6.6. Электродвигатели постоянного тока последовательного и смешанного возбуждений и их основные характеристики
- •6.7. Пуск, регулирование частоты вращения и реверс электродвигателей постоянного тока
- •7.Трёхфазные асинхронные машины
- •7.2. Зависимость частоты вращения ротора, величины эдс и тока
- •7.3. Электромагнитный момент и механическая характеристика
- •7.4. Пуск асинхронных двигателей (трёхфазных и однофазных)
- •7.5. Регулирование частоты вращения трёхфазного асинхронного двигателя
- •7.6. Реверс и способы управления асинхронными двигателями
- •8. Полупроводниковые приборы
- •8.1. Электропроводность полупроводников
- •8.2. Полупроводниковые диоды. Устройство, принцип действия
- •8.3. Биполярные транзисторы. Устройство, принцип работы
- •8.4. Схемы включения биполярных транзисторов с p-n-p структурой
- •8.5. Полевые транзисторы с управляющим p-n переходом
- •8.6. Полевые мдп-транзисторы с индуцированным каналом p-типа
- •8.7. Полевые мдп-транзисторы с индуцированным каналом n-типа
- •8.8. Динисторы, тиристоры. Устройство, принцип действия
- •8.9. Симисторы. Устройство, принцип действия
- •8.10. Фоторезисторы и фотодиоды. Устройство, принцип действия
- •8.11. Фототранзисторы, фототиристеры, оптроны.
- •9. Схемы электронных преобразователей
- •9.1. Однополупериодные и двухполупериодные выпрямители
- •9.2. Трёхфазные выпрямители. Электрические сглаживающие фильтры
- •9.3. Электронные уилители.
- •9.4. Усилительные каскады на биполярных транзисторах
- •9.5. Усилители постоянного тока
- •9.6. Импульсные усилители
- •9.7. Операционные усилители
- •10. Цифровые устройства
- •10.1. Логические функции, логически устройства.
- •10.2. Основные логические элементы.
- •4. Логический элемент или, операция логическое сложение ,
- •10.3. Диодные логические элементы или, и
- •10.4. Транзисторный логический элемент не. Логический элемент и-не транзисторно-транзисторной логики
- •10.5. Логический элемент или-не эмиттерно-связанной логики
- •10.6. Асинхронный rs-триггер. Устройство, принцип действия
- •10.7. Синхронный rs-триггер. Устройство, принцип действия
- •10.8. Синхронные d и t-триггеры. Устройство, принцип действия
- •10.9. Синхронный jк - триггер. Устройство, принцип действия
- •10.10. Шифратор. Устройство, принцип работы
- •10.11. Дешифратор. Устройство, принцип работы
- •10.12. Регистры. Устройство, принцип работы
- •10.13. Счётчики импульсов. Устройство, принцип работы
- •10.14. Сумматоры. Устройство, принцип работы
- •10.15. Аналого-цифровые и цифро-аналоговые преобразователи
- •10.16. Микропроцессоры и микропроцессорные системы
- •Библиографический список
- •Cодержание
- •1. Электрические цепи постоянного тока……………………………………………. 3
- •1.1. Элементы электрической цепи постоянного тока……………………………… 3
10.14. Сумматоры. Устройство, принцип работы
Сумматорами
называют логические устройства,
выполняющие арифметические суммирование
кодов двоичного числа. Символическое
изображение одноразрядного двоичного
сумматора показано на рис.10.29. Сумматор
имеет три входа, где
![]()
![]()
-
слагаемые одинакового разряда,
– слагаемое переноса; на выходе
формируется
–
сумма cлагаемых
и
–
слагаемое переноса в старший разряд.
Функционирование
однозарядного сумматора показано в
таблице, приведённой на рис.10.30. В этом
случае при сложении слагаемых
используется перевод десятичных чисел
в двоичные числа.

Pиc.10.29. Символическое изображение одноразрядного двоичного сумматора
Рассмотрим пример:
При
сложении слагаемых 0+1+0
получается десятичное число 1.
Такому числу соответствует двоичное
число 01,
при этом
Аналогично, 1+1+0
= 2,
которому соответствует двоичное число
10,
при этом
.
При сложении чисел 1+1+1
=
3, которому соответствует двоичное число
11,
при
этом
и так далее.
Сумматоры могут быть последовательного и параллельного действия. В сумматорах последовательного действия коды двоичных чисел вводятся в последовательной форме слагаемое за слагаемым, начиная с младшего разряда.
На рис.10.31 изображена схема сумматора последовательного действия, предназначенного для суммирования четырёхразрядных двоичных чисел. Сумматор построен на трёх регистрах сдвига, D-триггере и на одноразрядном сумматоре.

Рис.10.30. Таблица функционирования одноразрядного сумматора

Рис.10.31. Схема сумматора последовательного действия
Функционирование сумматора приведено в таблице рис.10.32.

Рис.10.32. Таблица функционирования сумматора
Для
ускорения операции сложения используются
сумматоры параллельного действия,
которые состоят из нескольких однозарядных
сумматоров. В таких сумматорах слагаемые
![]()
поступают одновременно на соответствующие
входы однозарядных сумматоров, при этом
каждый из однозарядных сумматоров
формирует на своих выходах суммы
соответствующих разрядов и слагаемые
переноса, передаваемых на входы старших
разрядов. Схема четырёхразрядного
сумматора параллельного действия
приведена на рис.10.33.
Рис.10.33. Схема четырёхразрядного сумматора параллельного действия
10.15. Аналого-цифровые и цифро-аналоговые преобразователи
Аналого-цифровой преобразователь (АЦП) предназначен для преобразования сигналов из аналоговой формы в цифровой код. На рис.10.34 изображена структурная схема аналого-цифрового преобразователя, а на рис.10.35 временные зависимости работы узлов преобразователя. Преобразователь (АЦП) состоит из следующих основных блоков: блока управления (БУ), генератора пилообразного напряжения (ГПН), счётчика импульсов (СЧ), генератора тактовых импульсов (ГТИ), устройства сравнения (УС), а также включает логические элементы: инвертор, асинхронный RS-триггер и элемент И.
Аналого-цифровой
преобразователь функционирует следующим
образом. При включении преобразователя
с блока управления запускаются генераторы
пилообразного напряжения и тактовых
импульсов, одновременно счётчик импульсов
устанавливается в нулевое состояние.
На вход устройства сравнения поступают
непрерывный аналоговый сигнал
и сигнал пилообразной формы с выхода
генератора пилообразного напряжения
.
Если эти сигналы не совпадают, то инвертор
установит RS-триггер
в единичное состояние и в промежутке
времени
на выходе логического элемента И
появятся импульсы, количесво которых
совпадает с чередованием тактовых
импульсов.

Рис.10.34. Структурная схема аналого-цифрового преобразователя
Эти
импульсы поступают на вход счётчика.
При совпадении аналогового сигнала с
первым пилообразным импульсом, на выходе
устройства сравнения появляется
прямоугольный
импульс,
соответствующий интервалу
,
который устанавливает RS-триггер
в нулевое состояние и счётчик прекращает
счёт импульсов. С интервала времени
триггер снова устанавливается в единичное
состояние и процесс работы устройства
повторяется. При этом с выхода логического
элемента И
на вход счётчика будут поступать тактовые
импульсы с числами
,
которые преобразуются в цифровой код.
Цифро-аналоговым преобразователем (ЦАП) называется устройство, служащее для преобразования цифрового двоичного кода в аналоговое напряжение или ток. Рассмотрим схему цифро-аналогового преобразователя с суммированием напряжений (рис.10.36). Пусть ЦАП состоит из операционного суммирующего усилителя и регистра с четырьмя информационными входами и одним синхронизирующим входом. На информационные входы регистра поступают двоичные числа, предназначенные для перевода их в пропорциональные значения изменяющегося напряжения на выходе устройства. На выходах четырёхразрядного регистра могут быть либо лог.1, либо лог.0. Единичное напряжение на входе операционного усилителя обозначим через Е.
![]()

Рис.10.35. Временные зависимости работы узлов преобразователя
Напряжение с выходов регистра подаются на входы операционного усиления, работающего в режиме сумматора с весовыми коэффициентами R, 2R, 4R, 8R. Тогда для каждого выхода регистра предусматривается отдельный вход в сумматоре с коэффициентом передачи кui = Roc/Rвxi. Напряжения, передаваемые на выход усилителя с выходов регистра отдельных разрядов, находящихся в состоянии лог.1 пропорциональны весовым коэффицентам разрядов.
Если в состоянии лог.1 находится все выходы регистра, то напряжение на входе усилителя равно сумме напряжений, передаваемых на вход от отдельных разрядов двоичного числа в регистре. Сопротивление старшего разряда равно R, младшего разряда – 8R. Тогда напряжение на выходе ЦАП при Uвх=Е будет определяться выражением:
Uвых=
- (
)
=кu
.
В случае,
если на некоторых выходах регистра (Q1,
Q2,
Q3,Q4)
появятся лог.
1,
то при этом изменится и
(за счёт изменения коэффициента усиления
по напряжению).

Рис.10.36. Схема цифро-аналогового преобразователя с суммированием напряжений
