
- •Электроны в твердых телах Мурзакаев а.М.
- •Глава 1 Элементы квантовой механики.
- •Глава 2. Зонная теория твердых тел.
- •Глава 3. Статистика носителей заряда в твердых телах.
- •Глава 4. Электропроводность твердых тел.
- •Глава 1. Элементы квантовой механики
- •1.1. Экспериментальные и теоретические предпосылки квантовой механики
- •1.2. Гипотеза де Бройля. Корпускулярно-волновой дуализм микрочастиц
- •1.3. Волновая функция свободного электрона. Статистический смысл волновой функции
- •1.4. Соотношения неопределенностей Гейзенберга
- •1.5. Уравнение Шредингера
- •1.6. Частица в одномерной прямоугольной потенциальной яме
- •1.7. Квантовый гармонический осциллятор
- •1.8. Прохождение частиц через потенциальный барьер. Туннельный эффект
- •1.9. Водородоподобные атомы
- •Глава 2 зонная теория твердых тел
- •2.1. Движение электронов в периодическом поле кристалла. Уравнение Шредингера для кристалла
- •2.2. Энергетические зоны в приближении сильной связи
- •2.3. Общие свойства волновой функции электрона в периодическом потенциале. Теорема Блоха
- •2.4. Модель Кронига-Пенни
- •2.5. Энергетические зоны в модели Кронига-Пенни
- •2.6. Заполнение энергетических зон электронами. Металлы, диэлектрики и полупроводники
- •2.7. Эффективная масса электрона в кристалле и ее физический смысл
- •2.8. Собственные полупроводники. Понятие о дырках
- •2.9. Примесные полупроводники
- •Глава 3 статистика носителей заряда в твердых телах
- •3.1. Статистическое описание коллектива частиц.
- •Функция распределения частиц по состояниям. Фермионы и бозоны
- •3.2. Функция распределения Ферми-Дирака. Уровень Ферми. Энергия Ферми. Влияние температуры на распределение Ферми-Дирака
- •3.3. Функция плотности состояний электронов и дырок
- •3.4. Концентрации электронов и дырок в полупроводнике. Закон действующих масс. Невырожденный газ электронов и дырок
- •3.5. Уровень Ферми в полупроводниках
- •3.6. Равновесные и неравновесные носители заряда. Квазиуровни Ферми
- •Глава 4 электропроводность твердых тел
- •4.1. Дрейф свободных носителей заряда в электрическом поле
- •4.2. Электропроводность металлов
- •4.3. Электропроводность собственных полупроводников
- •4.4. Электропроводность примесных полупроводников
3.6. Равновесные и неравновесные носители заряда. Квазиуровни Ферми
Положение уровня Ферми в собственных и примесных полупроводниках связано с концентрацией носителей заряда, установившейсяпри данной температуре в состоянии термодинамического равновесия. Переброс электронов в зону проводимости за счет температурного возбуждения и возникновение в результате этого процесса дырок в валентной зоне называется термической генерацией свободных носителей заряда. Одновременно происходит и обратный процесс: электроны возвращаются в валентную зону, в результате чего исчезают электрон и дырка. Этот процесс называется рекомбинацией носителей заряда. Для количественного описания процессов генерации и рекомбинации носителей заряда в полупроводниках используют понятия скорости генерации, скорости рекомбинации и времени жизни носителей заряда.
Скорость генерации носителей - это число носителей, возбуждаемых в единичном объеме полупроводника за единицу времени.
Скорость рекомбинации носителей - это число носителей, рекомбинирующих в единице объема полупроводника за единицу времени.
Время жизни носителeй - это среднее время от генерации носителя до его рекомбинации.
Из приведенных выше определений непосредственно следуют следующие соотношения между скоростями рекомбинации электронов Rn и дырок Rp и их временами жизни n и p соответственно:
(3.28)
Здесь учтено, что 1/ - вероятность рекомбинации носителя за единицу времени.
При фиксированной температуре устанавливается термодинамическое равновесие, при котором процессы генерации и рекомбинации взаимно уравновешиваются. Такие носители, находящиеся в тепловом равновесии с кристаллической решеткой, называются равновесными.
Электропроводность полупроводника может быть возбуждена и другими способами, например, облучением светом, действием ионизирующих частиц, электрическим полем, инжекцией носителей через контакт и др. Во всех этих случаях дополнительно к равновесным носителям в полупроводнике возникают носители заряда, которые не будут находиться в состоянии теплового равновесия с кристаллом. Такие носители называются неравновесными.
Общую концентрацию электронов в зоне проводимости n в случае равновесных и неравновесных носителей можно представить в виде
,
(3.29)
где n0 – концентрация равновесных электронов; n - концентрация неравновесных электронов.
Общая концентрация дырок
,
(3.30)
где p0 и p - равновесная и неравновесная концентрации дырок соответственно.
Поскольку распределение Ферми-Дирака справедливо только для состояния термодинамического равновесия, то понятно, что статистика неравновесных носителей должна быть иной. В отсутствие термодинамического равновесия принято вводить два новых параметра распределения EFn для электронов и EFp для дырок. Эти параметры выбираюттаким образом, чтобы для концентраций электронов и дырок при наличии неравновесныхносителей выполнялись уравнения (3.17) и (3.19) соответственно при условии замены EF на EFn для электронов и на EFp для дырок. Величины EFn и EFp называют квазиуровнями Ферми электронов и дырок соответственно. Таким образом, в невырожденных полупроводниках справедливы уравнения
,
(3.31)
.
(3.32)
|
|
|
|
Поскольку при наличии избыточных
носителей заряда закон действующих
масс не выполняется (),
т.к. нет никакой зависимости между n и
p, квазиуровни Ферми для электронов и
дырок разные и не совпадают с равновесным
уровнем Ферми (рис.3.7).
В состоянии термодинамического равновесия квазиуровни Ферми совпадают с равновесным уровнем Ферми EF. Чем выше концентрация неравновесных носителей заряда, тем дальше отстоят квазиуровниФерми от уровня Ферми. Из уравнений (3.31), (3.32), (3.17) и (3.19) следует
.
(3.33)
Это соотношение
выражает связь между концентрациями
электронов и дырок в неравновесном
состоянии. Разность энергий
характеризует
отклонение от состояния термодинамического
равновесия. Если np > n0 ·
p0, то
.
Это условие соответствует инжекции
(вбрасыванию) избыточных носителей.
Если np < n0 p0
, то говорят об экстракции
(обеднении) носителей.
Неравновесные носители играют важную роль в работе полупроводниковых приборов.