
- •Электроны в твердых телах Мурзакаев а.М.
- •Глава 1 Элементы квантовой механики.
- •Глава 2. Зонная теория твердых тел.
- •Глава 3. Статистика носителей заряда в твердых телах.
- •Глава 4. Электропроводность твердых тел.
- •Глава 1. Элементы квантовой механики
- •1.1. Экспериментальные и теоретические предпосылки квантовой механики
- •1.2. Гипотеза де Бройля. Корпускулярно-волновой дуализм микрочастиц
- •1.3. Волновая функция свободного электрона. Статистический смысл волновой функции
- •1.4. Соотношения неопределенностей Гейзенберга
- •1.5. Уравнение Шредингера
- •1.6. Частица в одномерной прямоугольной потенциальной яме
- •1.7. Квантовый гармонический осциллятор
- •1.8. Прохождение частиц через потенциальный барьер. Туннельный эффект
- •1.9. Водородоподобные атомы
- •Глава 2 зонная теория твердых тел
- •2.1. Движение электронов в периодическом поле кристалла. Уравнение Шредингера для кристалла
- •2.2. Энергетические зоны в приближении сильной связи
- •2.3. Общие свойства волновой функции электрона в периодическом потенциале. Теорема Блоха
- •2.4. Модель Кронига-Пенни
- •2.5. Энергетические зоны в модели Кронига-Пенни
- •2.6. Заполнение энергетических зон электронами. Металлы, диэлектрики и полупроводники
- •2.7. Эффективная масса электрона в кристалле и ее физический смысл
- •2.8. Собственные полупроводники. Понятие о дырках
- •2.9. Примесные полупроводники
- •Глава 3 статистика носителей заряда в твердых телах
- •3.1. Статистическое описание коллектива частиц.
- •Функция распределения частиц по состояниям. Фермионы и бозоны
- •3.2. Функция распределения Ферми-Дирака. Уровень Ферми. Энергия Ферми. Влияние температуры на распределение Ферми-Дирака
- •3.3. Функция плотности состояний электронов и дырок
- •3.4. Концентрации электронов и дырок в полупроводнике. Закон действующих масс. Невырожденный газ электронов и дырок
- •3.5. Уровень Ферми в полупроводниках
- •3.6. Равновесные и неравновесные носители заряда. Квазиуровни Ферми
- •Глава 4 электропроводность твердых тел
- •4.1. Дрейф свободных носителей заряда в электрическом поле
- •4.2. Электропроводность металлов
- •4.3. Электропроводность собственных полупроводников
- •4.4. Электропроводность примесных полупроводников
3.5. Уровень Ферми в полупроводниках
Понятия энергии Ферми и уровня Ферми были введены ранее для металлов. Поскольку в полупроводниках функция распределения электронов по состояниям имеет тот же вид, что и в металлах, то энергия Ферми в полупроводниках имеет тот же физический смысл: энергия Ферми - это максимально допустимая энергия, ниже которой при нулевой абсолютной температуре все энергетические уровни заняты [f(E) = 1], а выше которой все уровни пусты [f(E) = 0]. Для полупроводников, у которых при абсолютном нуле валентная зона полностью заполнена, а зона проводимости совершенно свободна, функция распределения имеет разрыв. Следовательно, уровень Ферми в полупроводнике должен лежать при абсолютном нуле в запрещенной зоне.
Для собственного полупроводника концентрации электронов и дырок равны (n = p), т.к. каждый электрон, покинувший валентную зону, создает одну дырку. Приравнивая равенства (3.17) и (3.19), получим
Разрешая последнее равенство относительно ЕF, получим
(3.23)
Если эффективные массы электронов
и дырок равны [
=
,
=
0] уровень Ферми собственного полупроводника
при любой температуре располагается
посередине запрещенной зоны.
Температурная зависимость положения уровня Ферми в собственном полупроводнике определяется третьим слагаемым в уравнении (3.23). Если эффективная масса дырки в валентной зоне больше эффективной массы электрона в зоне проводимости, то уровень Ферми смещается с повышением температуры ближе к дну зоны проводимости. В противоположном случае уровень Ферми смещается к потолку валентной зоны. Положение уровня Ферми в собственном полупроводнике с изменением температуры схематически показано на рис. 3.5.
Для большинства
полупроводников эффективная масса
дырки не намного превышает эффективную
массу электрона и смещение уровня Ферми
с изменением температуры незначительно.
Однако у антимонида индия (InSb)
,
а ширина запрещенной зоны невелика (Eg
= 0,17 эВ), так что при Т > 450 K уровень
Ферми входит в зону проводимости. При
этой температуре полупроводник переходит
в вырожденное состояние.
Рис. 3.5. Положение уровня Ферми в собственном полупроводнике
1
-
|
Положение уровня Ферми в примесных полупроводниках может быть найдено из условия электронейтральности кристалла. Для донорного полупроводника это условие записывается в виде
,
(3.24)
здесь Nd - концентрация донорных уровней, nd - концентрация электронов на донорных уровнях. Концентрация электронов в зоне проводимости равна сумме концентраций дырок в валентной зоне и концентрации положительно заряженных ионов доноров (последняя, очевидно, равна Nd - nd).
Концентрацию электронов на донорных уровнях можно вычислить, умножив концентрацию этих уровней Nd на функцию распределения Ферми-Дирака:
,
(3.25)
где Еd - энергия активации донорных уровней.
Подстановка в условие электронейтральности (3.24) концентраций электронов (3.17) и дырок (3.19), а также концентрации электронов на донорных уровнях (3.25) приводит к следующему уравнению относительно положения уровня Ферми ЕF :
.
(3.26)
При подстановке концентрации электронов на донорных уровнях в уравнение (3.24 ) было сделано предположение, что газ электронов примесных атомов невырожденный, что позволило пренебречь единицей в знаменателе формулы (3.25).
Уравнение (3.26) ввиду его сложности обычно в общем виде не решают, а ограничиваются рассмотрением частных случаев. Например, при низких температурах, когда электроны в зоне проводимости появляются в основном за счет переходов с примесных уровней, а концентрация дырок близка к нулю, решение уравнения (3.26) имеет вид
.
(3.27)
Из уравнения (3.27) следует, что при абсолютном нуле температуры энергия Ферми донорного полупроводника находится строго посередине между дном зоны проводимости и донорными уровнями. Температурная зависимость положения уровня Ферми определяется третьим членом в уравнении (3.27), который меняет знак с изменением температуры. Поэтому уровень Ферми с повышением температуры сначала смещается к зоне проводимости, а затем - к валентной зоне (рис. 3.6,а).
Аналогично можно получить выражение
для температурной зависимости уровня
Ферми в акцепторном полупроводнике.
График этой зависимости схематически
приведен на рис. 3.6,б.