
- •Электроны в твердых телах Мурзакаев а.М.
- •Глава 1 Элементы квантовой механики.
- •Глава 2. Зонная теория твердых тел.
- •Глава 3. Статистика носителей заряда в твердых телах.
- •Глава 4. Электропроводность твердых тел.
- •Глава 1. Элементы квантовой механики
- •1.1. Экспериментальные и теоретические предпосылки квантовой механики
- •1.2. Гипотеза де Бройля. Корпускулярно-волновой дуализм микрочастиц
- •1.3. Волновая функция свободного электрона. Статистический смысл волновой функции
- •1.4. Соотношения неопределенностей Гейзенберга
- •1.5. Уравнение Шредингера
- •1.6. Частица в одномерной прямоугольной потенциальной яме
- •1.7. Квантовый гармонический осциллятор
- •1.8. Прохождение частиц через потенциальный барьер. Туннельный эффект
- •1.9. Водородоподобные атомы
- •Глава 2 зонная теория твердых тел
- •2.1. Движение электронов в периодическом поле кристалла. Уравнение Шредингера для кристалла
- •2.2. Энергетические зоны в приближении сильной связи
- •2.3. Общие свойства волновой функции электрона в периодическом потенциале. Теорема Блоха
- •2.4. Модель Кронига-Пенни
- •2.5. Энергетические зоны в модели Кронига-Пенни
- •2.6. Заполнение энергетических зон электронами. Металлы, диэлектрики и полупроводники
- •2.7. Эффективная масса электрона в кристалле и ее физический смысл
- •2.8. Собственные полупроводники. Понятие о дырках
- •2.9. Примесные полупроводники
- •Глава 3 статистика носителей заряда в твердых телах
- •3.1. Статистическое описание коллектива частиц.
- •Функция распределения частиц по состояниям. Фермионы и бозоны
- •3.2. Функция распределения Ферми-Дирака. Уровень Ферми. Энергия Ферми. Влияние температуры на распределение Ферми-Дирака
- •3.3. Функция плотности состояний электронов и дырок
- •3.4. Концентрации электронов и дырок в полупроводнике. Закон действующих масс. Невырожденный газ электронов и дырок
- •3.5. Уровень Ферми в полупроводниках
- •3.6. Равновесные и неравновесные носители заряда. Квазиуровни Ферми
- •Глава 4 электропроводность твердых тел
- •4.1. Дрейф свободных носителей заряда в электрическом поле
- •4.2. Электропроводность металлов
- •4.3. Электропроводность собственных полупроводников
- •4.4. Электропроводность примесных полупроводников
2.4. Модель Кронига-Пенни
Теорема Блоха позволяет аналитически решить задачу об электроне в периодическом поле кристаллической решетки в приближении слабой связи при некоторых упрощающих предположениях. Основная трудность в решении уравнения (2.1) связана с невозможностью точно записать вид функции U(r). Поэтому часто периодическую зависимость функции U(r) заменяют более простой функцией с точно таким же периодом. В модели Кронига-Пенни ограничиваются рассмотрением одномерной задачи, в которой периодический потенциал заменяется цепочкой прямоугольных потенциальных ям (рис. 2.4). Ширина каждой ямы а, они отделены друг от друга прямоугольными потенциальными барьерами высотой U0 и шириной b. Период повторения ям с = а + b.
Стационарное уравнение Шредингера будет иметь в этом случае вид
(2.7)
Начало системы координат (точку х = 0) выберем так, чтобы она совпадала с левым краем потенциальной ямы, как это показано на рис. 2.4,б. Tогда потенциальная функция
,
(2.8)
В соответствии с теоремой Блоха волновая
функция электрона
(x)
может быть представлена в виде
.
(2.9)
Рис.2.4. Изменение потенциальной энергии электрона: а - в реальном кристалле; б - в модели Кронига-Пенни
Индексы n и k упущены для простоты записи. Функция u(x) (блоховский множитель) имеет период c
Подставляя (2.9) в уравнение (2.7), получим дифференциальное уравнение для блоховского множителя
(2.10 a)
для электронов, находящихся внутри потенциальных ям, и
(2.10 б)
для электронов, находящихся вне потенциальных ям. В этих уравнениях Ek - кинетическая энергия электрона
.
Общее решение уравнения (2.10 а) для электронов внутри потенциальных ям может быть записано в виде
(2.11 а)
где
- некоторый параметр, который может быть
найден подстановкой решения в виде
(2.11 а) в исходное уравнение (2.10 а). Эта
подстановка приводит к следующему
значению
:
В области вне потенциальных ям при условии, что высота потенциального барьера U0 выше полной энергии электрона Е, решение уравнения (2.10 б) имеет вид
(2.11 б)
где
.
Постоянные A, B, C и D в формулах (2.11 а) и (2.11 б) находятся как обычно из граничных условий. Граничные условия требуют, чтобы функция u(x) и ее первая производная в местах скачков потенциала, т. е. на стенках потенциальных ям, были непрерывны. Эти требования приводят к следующей системе уравнений:
.
(2.12)
Система уравнений (2.12) после подстановки
в нее функций
и
,
согласно равенствам (2.10 а) и (2.10 б),
преобразуется в систему линейных
однородных алгебраических уравнений,
в которых неизвестными являются
коэффициенты A, B, C и D.
Определитель этой системы будет равен
нулю (только при этом условии система
линейных однородных уравнений имеет
отличные от нуля решения), если выполняется
следующее равенство:
.
(2.13)
Выражение (2.13) можно значительно
упростить, если допустить, что ширина
барьера стремится к нулю
,
а его высота - к бесконечности
,
но таким образом, чтобы произведение
оставалось постоянным
.
При
этих условиях выражение (2.13) преобразуется
к виду:
, (2.14)
где
Поскольку
- параметр, определяемый энергией Е
электрона, а k - волновой вектор
электрона, то выражение (2.14) представляет
зависимость E(k), т. е. дисперсионное
соотношение для электрона в кристаллической
решетке. Это дисперсионное соотношение
можно записать в явном виде, решив
уравнение (2.14) относительно
при фиксированном значении параметра
p.