
- •Основы робототехники. Устройство роботов План лекции.
- •Лекция 1 Введение
- •Классификация роботов по назначению
- •Лекция 2 Кинематика манипулятора
- •Матрицы сложных поворотов
- •Лекция 3 Матрица поворота вокруг произвольной оси
- •Представление матриц поворота через углы Эйлера
- •Лекция 4 Геометрический смысл матриц поворота
- •Свойства матриц поворота
- •Однородные координаты и матрицы преобразований
- •Лекция 5 Звенья, сочленения и их параметры
- •Представление Денавита – Хартенберга
- •Алгоритм формирования систем координат звеньев
- •Для манипулятора Пума
- •Лекция 6 Уравнения кинематики манипулятора
- •Классификация манипуляторов
- •Обратная задача кинематики
- •Метод обратных преобразований
- •Лекция 7 Геометрический подход
- •Определение различных конфигураций манипулятора
- •Решение обратной задачи кинематики для первых трех сочленений
- •Решение для первого сочленения
- •Решение для второго сочленения
- •Лекция 8 Решение для третьего сочленения
- •Решение обратной задачи кинематики для последних трех сочленений
- •Решение для четвертого сочленения
- •Решение для пятого сочленения
- •Решение для шестого сочленения
- •Лекция 9 Уравнения вида конфигурации для определения индикаторов конфигурации манипулятора
- •Машинное моделирование
- •Динамика манипулятора
- •Метод Лагранжа-Эйлера
- •Скорость произвольной точки звена манипулятора
- •Лекция 10 Кинематическая энергия манипулятора
- •Потенциальная энергия манипулятора
- •Уравнение движения манипулятора
- •Уравнения движения манипулятора с вращательными сочленениями
- •Пример: двухзвенный манипулятор
- •Лекция 11 Уравнения Ньютона-Эйлера
- •Вращающиеся системы координат
- •Лекция 12 Подвижные системы координат
- •Кинематика звеньев
- •Лекция 13 Рекуррентные уравнения динамики манипулятора
- •Лекция 14 Планирование траекторий манипулятора
- •Сглаженные траектории в пространстве присоединенных переменных
- •Расчет 4-3-4 - траектории
- •Лекция 15 Граничные условия для 4-3-4-траекторий
- •Лекция 16 Управление манипуляторами промышленного робота
- •Метод вычисления управляющих моментов
- •Передаточная функция одного сочленения робота
- •Лекция 17 Устройство позиционирования для одного сочленения манипулятора
- •Критерии работоспособности и устойчивости
- •Лекция 18 Компенсация в системах с цифровым управлением
- •Зависимость момента от напряжения
- •Управление манипулятором с переменной структурой
- •Адаптивное управление
- •Адаптивное управление по заданной модели
- •Адаптивное управление с авторегрессивной моделью
- •Лекция 19 Адаптивное управление по возмущению
- •Независимое адаптивное управление движением
- •Лекция 20 очувствление Введение
- •Датчики измерения в дальней зоне
- •Триангуляция
- •Метод подсветки
- •Лекция 21 Измерение расстояния по времени прохождения сигнала
- •Очувствление в ближней зоне
- •Индуктивные датчики
- •Датчики Холла
- •Лекция 22 Емкостные датчики
- •Ультразвуковые датчики
- •Оптические датчики измерения в ближней зоне
- •Лекция 23 Тактильные датчики
- •Дискретные пороговые датчики
- •Аналоговые датчики
- •Силомоментное очувствление
- •Элементы датчика схвата, встроенного в запястье
- •Выделение сил и моментов
- •Лекция 24 Системы технического зрения
- •Получение изображения
- •Лекция 25 Методы освещения
- •Стереоизображение
- •Системы технического зрения высокого уровня
- •Сегментация
- •Проведение контуров и определение границ
Критерии работоспособности и устойчивости
Работа замкнутой системы управления второго порядка основана на критериях:
-
обеспечение хорошей динамики;
-
небольшая или нулевая статическая ошибка;
-
малое время переходных процессов.
Предполагаем, что возмущения отсутствуют. Тогда из уравнения (17-7) видно, что мы имеем систему второго порядка с нулевым корнем. Характеристическое уравнение системы второго порядка может быть записано в стандартной форме:
,
(17-8)
где
и
- соответственно
коэффициент демпфирования и собственная
частота колебаний системы;
(17-9)
и
.
(17-10)
Работа
системы второго порядка определяется
значениями ее собственной частоты
колебаний
и
коэффициентом демпфирования
.
Для устранения
колебаний и резонанса конструкции
сочленения необходимо выбирать значение
частоты собственных колебаний, не
превышающих половины величины резонансной
частоты конструкции сочленения:
,
где
-
резонансная частота конструкции
сочленения, (рад/с).
Резонансная частота конструкции зависит
от материала, из которого изготовлен
манипулятор. Если эффективную жесткость
сочленения обозначить
,
то возвращающий момент
противодействует моменту инерции
двигателя:
.
(17-11)
Произведя преобразование Лапласа, получим характеристическое уравнение выражения (17-11) в виде:
.
(17-12)
Решение этого уравнения дает резонансную частоту конструкции системы:
.
(17-13)
Для того, чтобы скомпенсировать силы тяжести и центробежные силы, можно вычислить величины моментов от них и эти значения подать в устройство управления, как это показано на рис. 17.3, с целью минимизации их влияния. Такая компенсация называется компенсацией по прямой связи.
Рисунок 17.3. Компенсация возмущений
Если
момент компенсации
создается только силой тяжести звена
манипулятора, выражение для статической
ошибки позиционирования:
,
(17-14)
где
-
момент, выраженный через преобразование
Лапласа.
В общем случае уравнения Лагранжа-Эйлера, описывающие движение манипулятора с шестью сочленениями без учета динамики электронного управляющего блока, трения в редукторе и люфтов, могут быть записаны в виде, соответствующем уравнению (10-11):
(17-15)
где
-
обобщенный управляющий момент в i-м
сочленении для перемещения i-го
звена;
и
- соответственно угловая скорость и
угловое ускорение i-го
сочленения;
-
обобщенная координата манипулятора,
определяющая его угловое положение;
-
однородная матрица преобразования для
звена размерностью 4×4, которая связывает
пространственное расположение между
двумя системами координат (i-й
и базовой);
-
положение центра масс i-го
звена относительно i-й
координаты системы;
-
линейный вектор силы тяжести,
;
-
матрица псевдоинерции i-го
звена относительно системы координат
i-го
звена, которая может быть записана в
соответствии с уравнением (10-5).
Эта компенсация соответствует тому, что обычно называют методом обратной задачи динамики или методом вычисления момента.