
- •Основы робототехники. Устройство роботов План лекции.
- •Лекция 1 Введение
- •Классификация роботов по назначению
- •Лекция 2 Кинематика манипулятора
- •Матрицы сложных поворотов
- •Лекция 3 Матрица поворота вокруг произвольной оси
- •Представление матриц поворота через углы Эйлера
- •Лекция 4 Геометрический смысл матриц поворота
- •Свойства матриц поворота
- •Однородные координаты и матрицы преобразований
- •Лекция 5 Звенья, сочленения и их параметры
- •Представление Денавита – Хартенберга
- •Алгоритм формирования систем координат звеньев
- •Для манипулятора Пума
- •Лекция 6 Уравнения кинематики манипулятора
- •Классификация манипуляторов
- •Обратная задача кинематики
- •Метод обратных преобразований
- •Лекция 7 Геометрический подход
- •Определение различных конфигураций манипулятора
- •Решение обратной задачи кинематики для первых трех сочленений
- •Решение для первого сочленения
- •Решение для второго сочленения
- •Лекция 8 Решение для третьего сочленения
- •Решение обратной задачи кинематики для последних трех сочленений
- •Решение для четвертого сочленения
- •Решение для пятого сочленения
- •Решение для шестого сочленения
- •Лекция 9 Уравнения вида конфигурации для определения индикаторов конфигурации манипулятора
- •Машинное моделирование
- •Динамика манипулятора
- •Метод Лагранжа-Эйлера
- •Скорость произвольной точки звена манипулятора
- •Лекция 10 Кинематическая энергия манипулятора
- •Потенциальная энергия манипулятора
- •Уравнение движения манипулятора
- •Уравнения движения манипулятора с вращательными сочленениями
- •Пример: двухзвенный манипулятор
- •Лекция 11 Уравнения Ньютона-Эйлера
- •Вращающиеся системы координат
- •Лекция 12 Подвижные системы координат
- •Кинематика звеньев
- •Лекция 13 Рекуррентные уравнения динамики манипулятора
- •Лекция 14 Планирование траекторий манипулятора
- •Сглаженные траектории в пространстве присоединенных переменных
- •Расчет 4-3-4 - траектории
- •Лекция 15 Граничные условия для 4-3-4-траекторий
- •Лекция 16 Управление манипуляторами промышленного робота
- •Метод вычисления управляющих моментов
- •Передаточная функция одного сочленения робота
- •Лекция 17 Устройство позиционирования для одного сочленения манипулятора
- •Критерии работоспособности и устойчивости
- •Лекция 18 Компенсация в системах с цифровым управлением
- •Зависимость момента от напряжения
- •Управление манипулятором с переменной структурой
- •Адаптивное управление
- •Адаптивное управление по заданной модели
- •Адаптивное управление с авторегрессивной моделью
- •Лекция 19 Адаптивное управление по возмущению
- •Независимое адаптивное управление движением
- •Лекция 20 очувствление Введение
- •Датчики измерения в дальней зоне
- •Триангуляция
- •Метод подсветки
- •Лекция 21 Измерение расстояния по времени прохождения сигнала
- •Очувствление в ближней зоне
- •Индуктивные датчики
- •Датчики Холла
- •Лекция 22 Емкостные датчики
- •Ультразвуковые датчики
- •Оптические датчики измерения в ближней зоне
- •Лекция 23 Тактильные датчики
- •Дискретные пороговые датчики
- •Аналоговые датчики
- •Силомоментное очувствление
- •Элементы датчика схвата, встроенного в запястье
- •Выделение сил и моментов
- •Лекция 24 Системы технического зрения
- •Получение изображения
- •Лекция 25 Методы освещения
- •Стереоизображение
- •Системы технического зрения высокого уровня
- •Сегментация
- •Проведение контуров и определение границ
Классификация роботов по назначению
Промышленные роботы (ПР) составляют 85-90% всех роботов. Например, в ФРГ ПР применяются:
-
Керамическая промышленность: выдавливание керамического сырья, загрузка вальцовых (крокетных) машин, извлечение сформованных изделий, складирование, покрытие глазурью путем окунания, нанесение глазури пульверизатором, шлифовка изделия после обжига, загрузка и разгрузка печей.
-
Стекольная промышленность: загрузка и разгрузка машин.
-
Швейная промышленность: загрузка швейных машин.
-
Деревообрабатывающая промышленность: покрытие лаком, сборка изделий, забивка гвоздей, закручивание винтов.
-
Производство и обработка кожи: загрузка машин.
-
Резинообрабатывающая промышленность: распознавание образов, манипулирование шинами.
-
Асбестообрабатывающая промышленность: разрезка, обточка, шлифовка, штукатурка.
-
Обработка пластиков: загрузка сырья, разгрузка машин.
-
Мясообрабатывающая промышленность: рубка мяса.
По степени универсальности:
-
универсальные (для выполнения разных операций совместно с различными видами оборудования);
-
специализированные (выполняет одну операцию из нескольких возможных с различным оборудованием);
-
специальные (выполняет конкретную операцию с одним типом оборудования).
По виду технологических операций:
-
осуществляющие основные технологические операции;
-
выполняющие вспомогательные технологические операции по обслуживанию технологического оборудования (средства автоматизации).
По показателям, определяющим их конструкцию:
-
тип приводов робота (электрический, гидравлический, пневматический);
-
грузоподъемность (сверхлегкие – до 1 кг; легкие – от 1 до 10 кг; средние 10¸200 кг; тяжелые – 200¸1000 кг; сверхтяжелые – свыше 1000 кг);
-
количество манипуляторов (от 1 до 4 рук);
-
тип и параметры рабочей зоны манипуляторов (зоны рабочего пространства, которые может достать манипулятор при неподвижном основании);
-
рабочая зона манипулятора – это пространство, в котором находится его рабочий орган при всех возможных положениях звеньев манипуляторов. Форма рабочей зоны определяется, во-первых, типом системы координат (прямоугольная, цилиндрическая, сферическая, угловая (ангулярная) и различные их комбинации). Во-вторых, она зависит от числа степеней подвижности манипулятора (от 1 до 6, свыше 6 их мало, не более 2%);
-
подвижность робота определяется наличием или отсутствием у него устройства передвижения (подвижный или стационарный). Подвижные имеют любые типы устройств перемещения: колесные, гусеничные, шагающие, воздушные, ракетные и т.п.;
-
по способу размещения стационарные и подвижные роботы бывают напольными, подвесными (перемещаются по монорельсу), встраиваемые в другое оборудование (в станок или др.);
-
по исполнению робота - зависит от назначения (нормальное, пылезащитное, теплозащитное, влагозащитное, взрывобезопасное и т.п.).
По способу управления:
-
с программным управлением;
-
с адаптивным управлением;
-
с интеллектуальным управлением.
Управление по отдельным степеням подвижности может быть непрерывным (контурным) и дискретным (позиционным).
Простейший вариант дискретного (позиционного) управления является цикловое, при котором количество точек позиционирования по каждой степени подвижности минимально, т. е. чаще всего ограничиваются двумя – начальной и конечной.
К важным параметрам систем управления роботов, определяющим их эксплутационные возможности, относятся объём памяти УУ, типы и количество каналов связи с внешним оборудованием (способы программирования).
По быстродействию движений:
-
малое быстродействие – до 0,5 м/с;
-
среднее – линейные скорости от 0,5 до 1 м/с (~80 % роботов);
-
высокое – свыше 1 м/с (~20 % роботов).
По точности движений:
-
малая точность – при линейной погрешности от 1мм и выше;
-
средняя – от 0,1 до 1 мм (больше всего роботов);
-
высокая – менее 0,1мм.
Параметры, определяющие технический уровень роботов:
-
надёжность;
-
число одновременно работающих степеней подвижности;
-
время программирования;
-
удельная грузоподъёмность (отнесённая к массе робота);
-
выходная мощность манипулятора (произведение грузоподъёмности на скорость перемещения), отнесённая к мощности его приводов;
-
относительные оценки габаритных параметров и т. п.
Эти параметры служат критериями качества, предназначенные для их оптимизации при проектировании и сравнительной оценки роботов.