
- •Раздел I
- •В.Г. Беспалов, в.Н. Крылов, в.Н. Михайлов основы оптоинформатики
- •Раздел I
- •Введение
- •Глава 1, глава 2 и Приложения написаны в.Г. Беспаловым, глава 3 написана в.Н. Крыловым и глава 4 написана в.Н. Михайловым.
- •§2. Предельные возможности элементной базы электронной компьютерной техники
- •§3. Оптические технологии в информатике
- •§4. Аналоговые оптические вычисления и процессоры
- •§5. Оптический процессор Enlight256
- •§6. Голографические методы обработки информации
- •§7. Цифровые оптические процессоры
- •Глава 2. Теория информации для оптических систем §1. Основы теории информации
- •§ 1.1. Количество информации в системе равновероятных событий. Подход Хартли.
- •§1.2. Количество информации в системе событий с различными вероятностями. Подход Шеннона
- •§1.3. Обобщенная схема информационной системы
- •§1.4. Основные характеристики информационной системы
- •§1.5. Дискретизация и теорема отчетов (Котельникова)
- •§1.6. Пропускная способность канала при наличии белого теплового шума
- •§1. 7. Избыточность информации
- •§2. Теория информации в оптике
- •§2.1. Число пространственных степеней свободы когерентных оптических сигналов
- •§2.2. Теоремы д. Габора
- •§2.3. Число степеней свободы частично когерентных оптических сигналов
- •§ 2.4. Информационная емкость голограмм
- •Глава 3. Источники излучения для оптоинформатики
- •§1. Физические основы работы лазеров
- •§1.1. Оптическое усиление
- •§1.2. Взаимодействие излучения с веществом.
- •1.2.1. Излучение абсолютно чёрного тела.
- •1.2.2. Статистика Больцмана
- •1.2.3. Коэффициенты Эйнштейна.
- •§1.3. Поглощение и усиление
- •1.3.1. Инверсная населённость.
- •§1.4. Принципы лазерной генерации
- •1.4.1. Методы создания инверсной населённости.
- •Трёхуровневая система.
- •Четырёхуровневая система.
- •Методы накачки активных лазерных веществ.
- •§1.5. Основные типы лазеров: классификация лазеров по агрегатному состоянию активного вещества
- •§1.6. Твердотельные лазеры
- •§1.5. Газовые лазеры
- •§1.5. Жидкостные лазеры
- •§2. Полупроводниковые лазеры §2.1. Физические основы работы полупроводникового лазера
- •§2.2. Полупроводники
- •§2.3. Прямозонные и непрямозонные полупроводники
- •§2.4. Полупроводниковые светодиоды
- •§2.5. Основные параметры полупроводниковых лазеров
- •§2.6. Полупроводниковые лазеры на основе гетероструктур
- •§2.7. Квантоворазмерные структуры
- •§2.8. Безопасность лазеров
- •§3. Источники излучения фемтосекундной и аттосекундной длительности §3.1. Предельно короткие импульсы света и сверхсильные поля
- •3.2. Методы генерации сверхкоротких, в том числе фемтосекундных импульсов
- •3.2.1. Электрооптический затвор на основе эффекта Поккельса.
- •3.2.2. Работа лазера в режиме синхронизации мод.
- •§3.2. Генерация аттосекундных импульсов электромагнитного излучения
- •Глава 4. Локальная и распределенная запись информации §4.1. Локальная (побитовая) запись
- •§4.2. Голографическая (распределенная) запись
- •§4.3. Оптические дисковые системы записи и хранения информации
- •§4.4. Голографические системы записи информации
- •§4.5. Быстродействие оптических устройств записи и хранения информации
- •Список литературы
- •Приложения Параметры и свойства оптических материалов
- •Механизмы поглощения оптического излучения в полупроводниках
- •Эффект Франца-Келдыша (электроабсорбционный эффект) в полупроводниках
- •Квантово-размерный эффект Штарка
- •Кафедра фотоники и оптоинформатики
§5. Оптический процессор Enlight256
Компания “Lenslet”, разработавшая оптический процессор, создана в 1999 году и насчитывает около 30 сотрудников, среди которых более 20 высококвалифицированных физиков и специалистов по оптике и электрооптике. Компания специализируется на управлении, миниатюризации и интеграции электронно-оптического оборудования, а также на высокоскоростных аналого-цифровых и цифро-аналоговых преобразованиях.
Оптический процессор Enlight256 является по принципу действия аналоговым оптическим вычислительным устройством, и аппаратно представляет собой развитую гибридную цифроаналоговую систему, содержащую как оптические узлы, так и необходимые в инженерной практике компьютерные узлы (например, популярную в цифровой технике для встраиваемых применений реализацию внутрисистемной отладки, соответствующую стандарту JTAG). Внутри "вычислительного ядра" Enlight, находится параллельная счетная машина со специализированной архитектурой, оптимальной для выполнения задачи умножения вектора на матрицу - каноническая операция в вычислительной математике,
Рис.29. Внешний вид процессора Enlight256
основной типовой "кирпичик", из множества которых можно организовать сколь угодно сложные вычисления. За один такт, длительностью 8 нс, процессор Enlight256 способен перемножить вектор из 256 элементов на матрицу размерностью 256 x 256. Разработчики Lenslet ограничили диапазон значений элементов вектора и матрицы числом 256, соответствующим традиционным 8-битным целым числам. И именно поэтому им пришлось реализовать уникальную систему динамической калибровки, для того чтобы устранить возможную потерю точности в ходе работы. Таким образом, производительность процессора Enlight256 составляет 8∙1012 операций с 8-ми битовыми числами в секунду: за один такт (8 нс) процессор умножает вектор из 256 8-ми битовых чисел на 256х256 8-ми битовую матрицу.
Ядро процессора Enlight256 - оптическое, а входная и выходная информация представляется в электронном виде. Ядро состоит из 256-ти VCSEL-лазеров1, пространственного модулятора света, набора линз и приемников излучения, образующие оптическую матрицу VMM (Vector-Matrix Multiplication), которая конвертирует электрическую информацию в свет, затем производит необходимые преобразования этой информации, направляя свет через программируемую внутреннюю оптику. Выходное излучение регистрируется приемниками и преобразуется снова в электрический сигнал.
VMM состоит из трех основных элементов:
1. Линейки из 256 полупроводниковых VCSEL лазеров, которые представляются как вектор, состоящий из 256 элементов и являются одним из "регистров" оптического АЛУ, каждый элемент которого - это число разрядностью 8 бит.
2. Управляющее световым потоком интегрально-оптическое устройство на основе GaAs/GaAlAs полупроводниковых структур с квантовыми ямами (Multiple Quantum Well), состоящего из матрицы 256x256 пространственных модуляторов работающих на отражение.
3. Линейки из 256 фотоприемников излучения, которые интегрированы в массив аналогово-светового преобразования (Analog to Digital Converters, ADC).
Принцип устройства умножения детально рассказан в предыдущей главе (рис.4). Каждый элемент входного вектора проектируется на столбец матрицы, а каждый ряд матрицы проектируется на один детектор в векторе результата (вывода).
Программирование оптического цифрового сигнального процессора (Optical Digital Signal Processing Engine, ODSPE) заключается в изменении значений, которые сохранены в пространственном модуляторе (Spatial Light Modulator, SLM). Загрузка приложения (или данные внутри приложения) аналогична замене матрицы в пространственном модуляторе. Пространственный модулятор может поставляться как отдельный продукт, так что ничто не помешает потенциальному разработчику создать свой оптический процессор. Этот модулятор называется Ablaze, и о нем можно прочитать на сайте компании Lenslet.
EnLight256 уже сейчас используется для задач требующих высокой производительности, в частности один процессор такого типа способен в реальном времени обрабатывать до 15 видеоканалов стандарта HDTV, может использоваться для распознавания голоса, человеческих лиц, обработки изображений, MUD (Multi User Detection) и т.д. EnLight256 идеально подходит для применения в военных радарах высокого разрешения, так как способен обрабатывать данные от массивов антенн. Кроме того, размеры EnLight256 позволяют размещать его на транспортных средствах.