
- •Раздел I
- •В.Г. Беспалов, в.Н. Крылов, в.Н. Михайлов основы оптоинформатики
- •Раздел I
- •Введение
- •Глава 1, глава 2 и Приложения написаны в.Г. Беспаловым, глава 3 написана в.Н. Крыловым и глава 4 написана в.Н. Михайловым.
- •§2. Предельные возможности элементной базы электронной компьютерной техники
- •§3. Оптические технологии в информатике
- •§4. Аналоговые оптические вычисления и процессоры
- •§5. Оптический процессор Enlight256
- •§6. Голографические методы обработки информации
- •§7. Цифровые оптические процессоры
- •Глава 2. Теория информации для оптических систем §1. Основы теории информации
- •§ 1.1. Количество информации в системе равновероятных событий. Подход Хартли.
- •§1.2. Количество информации в системе событий с различными вероятностями. Подход Шеннона
- •§1.3. Обобщенная схема информационной системы
- •§1.4. Основные характеристики информационной системы
- •§1.5. Дискретизация и теорема отчетов (Котельникова)
- •§1.6. Пропускная способность канала при наличии белого теплового шума
- •§1. 7. Избыточность информации
- •§2. Теория информации в оптике
- •§2.1. Число пространственных степеней свободы когерентных оптических сигналов
- •§2.2. Теоремы д. Габора
- •§2.3. Число степеней свободы частично когерентных оптических сигналов
- •§ 2.4. Информационная емкость голограмм
- •Глава 3. Источники излучения для оптоинформатики
- •§1. Физические основы работы лазеров
- •§1.1. Оптическое усиление
- •§1.2. Взаимодействие излучения с веществом.
- •1.2.1. Излучение абсолютно чёрного тела.
- •1.2.2. Статистика Больцмана
- •1.2.3. Коэффициенты Эйнштейна.
- •§1.3. Поглощение и усиление
- •1.3.1. Инверсная населённость.
- •§1.4. Принципы лазерной генерации
- •1.4.1. Методы создания инверсной населённости.
- •Трёхуровневая система.
- •Четырёхуровневая система.
- •Методы накачки активных лазерных веществ.
- •§1.5. Основные типы лазеров: классификация лазеров по агрегатному состоянию активного вещества
- •§1.6. Твердотельные лазеры
- •§1.5. Газовые лазеры
- •§1.5. Жидкостные лазеры
- •§2. Полупроводниковые лазеры §2.1. Физические основы работы полупроводникового лазера
- •§2.2. Полупроводники
- •§2.3. Прямозонные и непрямозонные полупроводники
- •§2.4. Полупроводниковые светодиоды
- •§2.5. Основные параметры полупроводниковых лазеров
- •§2.6. Полупроводниковые лазеры на основе гетероструктур
- •§2.7. Квантоворазмерные структуры
- •§2.8. Безопасность лазеров
- •§3. Источники излучения фемтосекундной и аттосекундной длительности §3.1. Предельно короткие импульсы света и сверхсильные поля
- •3.2. Методы генерации сверхкоротких, в том числе фемтосекундных импульсов
- •3.2.1. Электрооптический затвор на основе эффекта Поккельса.
- •3.2.2. Работа лазера в режиме синхронизации мод.
- •§3.2. Генерация аттосекундных импульсов электромагнитного излучения
- •Глава 4. Локальная и распределенная запись информации §4.1. Локальная (побитовая) запись
- •§4.2. Голографическая (распределенная) запись
- •§4.3. Оптические дисковые системы записи и хранения информации
- •§4.4. Голографические системы записи информации
- •§4.5. Быстродействие оптических устройств записи и хранения информации
- •Список литературы
- •Приложения Параметры и свойства оптических материалов
- •Механизмы поглощения оптического излучения в полупроводниках
- •Эффект Франца-Келдыша (электроабсорбционный эффект) в полупроводниках
- •Квантово-размерный эффект Штарка
- •Кафедра фотоники и оптоинформатики
1.2.3. Коэффициенты Эйнштейна.
Введём определения коэффициентов Эйнштейна А и В. Если в веществе имеется два энергетических уровня 1 и 2 с населённостью N1 и N2, соответственно, то общее число атомов на этих уровнях всегда постоянно
N1 + N2 = Nобщ (1.7)
Атомы, переходя с уровня 2 на уровень 1, излучают энергию Е2 – Е1 = h21, а, переходя с уровня 1 на уровень 2 – поглощают энергию. Излучение и поглощение энергии в этой двухуровневой системе происходит квантами h21. Существует три типа взаимодействия электромагнитного излучения с такой двухуровневой системой: поглощение, спонтанное излучение и вынужденное излучение.
Основное состояние квантовой системы - состояние, при котором квантовая система (атом, молекула, ион и др.) наиболее устойчива благодаря тому, что ее внутренняя энергия минимальна. Переход квантовой системы в возбужденное состояние происходит при увеличении ее внутренней энергии, что эквивалентно переходу квантовой системы с основного уровня с минимальной энергией на один из возможных возбужденных уровней. Находящаяся в основном состоянии квантовая система может только поглощать излучение, переходя в возбужденное состояние.
Поглощение. Если электромагнитная волна с частотой 21, проходит через атомную систему с энергией между уровнями h21 (Рис. 1.6), тогда возможно уменьшение населённости уровня 1, пропорциональное как спектральной плотности энергии падающей волны r(n), так и населённости уровня N1
(1.8)
где B12 – коэффициент Эйнштейна или сечение поглощения.
Рис. 1.6. Поглощение электромагнитного излучения
Спонтанное излучение. После того, как атом поглотил квант электромагнитного излучения h21 и населённость верхнего уровня 2 увеличилась, возможно спонтанное излучение кванта с той же энергией, что сопровождается уменьшением населённости верхнего уровня (Рис.1.7), пропорциональное этой населённости
(1.9)
где А21 – коэффициент Эйнштейна – вероятность спонтанного перехода.
Рис. 1.7. Спонтанное излучение
Спонтанные переходы происходят самопроизвольно, случайно во времени. Спонтанное излучение не зависит от воздействия на квантовую систему внешнего электромагнитного излучения, и его закономерности определяются исключительно свойствами самой системы. Момент спонтанного перехода принципиально не может быть предсказан, и потому можно говорить лишь о вероятности такого перехода. Случайность спонтанных переходов приводит к тому, что различные атомы (квантовые системы) излучают независимо и несинхронно. Поэтому спонтанное излучение ненаправленно, некогерентно, неполяризованно и немонохроматично.
Следует отметить, что система может переходить в состояние 1 и безизлучательно, при этом разность энергий может выделиться в виде кинетической или тепловой энергии.
Вынужденное излучение. Электромагнитное излучение, испускаемое квантовой системой, находящейся в возбужденном, т.е. неравновесном состоянии, под действием внешнего электромагнитного излучения (Рис. 1.8) называется стимулированным или вынужденным излучением. При вынужденном излучении частота, фаза, поляризация и направление распространения испущенной электромагнитной волны полностью совпадают с соответствующими характеристиками волны вынуждающей. Поэтому вынужденное излучение полностью когерентно с вынуждающим излучением. Акт вынужденного излучения является обратным акту поглощения; вероятности процессов вынужденного излучения и поглощения равны.
Рис. 1.8. Вынужденное излучение