
- •Математика
- •Содержание
- •Комментарии к задаче №1 §1. Случайные события. Основные понятия
- •§2. Случайные события. Операции
- •§3. Классическое определение вероятности
- •§ 4. Примеры задач на классическую вероятностную схему
- •§5. О статистической и геометрической вероятностях
- •§6. Простейшие свойства вероятностей
- •§7. Условные вероятности. Независимость событий
- •§8. Вероятность наступления хотя бы одного события
- •§9. Формула полной вероятности.
- •§10. Формула байеса.
- •Комментарии к задаче №2 §11. Повторные независимые испытания
- •§12. Другие формулы вычисления вероятностей для схемы бернулли
- •Комментарии к задаче №3 §13. Случайные величины дискретного типа.
- •§14. Функция распределения.
- •§15. Математическое ожидание случайной величины дискретного типа.
- •§16. Дисперсия случайной величины.
- •§17. Биномиальный и пуассоновский законы распределения.
- •Числовые характеристики биномиального распределения.
- •Распределение Пуассона.
- •Числовые характеристики распределения Пуассона.
- •Комментарии к задаче №4 §18. Случайные величины непрерывного типа.
- •§19. Нормальный закон распределения и его характеристики
- •§20. Другие законы распределения непрерывных случайных величин.
- •Методические указания к выполнению задания №5
- •Часть 2.
- •Контрольные задания №№1-4 Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Контрольные задания №5
- •7. Приложения 1-4
- •Приложение 2 «Нормированная функция Лапласа»
- •8. Требования к оформлению контрольной работы
- •9. Список литературы
- •10. Приложение а. Содержание дисциплины.
- •Тема 4.1. Случайные события и вероятность.
- •Тема 4.2. Случайные величины.
- •Тема 4.5. Математическая статистика.
- •11. Перечень контрольных вопросов для проверки знаний по дисциплине.
§10. Формула байеса.
В этом параграфе {H1, H2, H3, H4} по-прежнему, полная группа несовместных событий (гипотез). Если Р(А) > 0, Р(Hk) > 0, то Р(А · Hk) = Р(А) · Р(Hk / А) = Р(Hk) · Р(А / Hk) (см. §§7,8), откуда
это формула Байеса, в которой Р(А) вычисляют по формуле полной вероятности. Р(Hk / А) вероятность осуществления гипотезы Hk при условии, что событие А осуществилось. Эту вероятность называют послеопытной или апостериорной. Для ее вычисления рассматривают только те испытания, которые закончились “успехом”, т.е. осуществлением события А. Вероятность Р(Hk / А) выражает “долю” гипотезы Hk для вышеуказанных испытаний.
Пример 1. (см. пример 1 из §8).
Два стрелка независимо друг от друга ведут стрельбу по мишени, причем вероятности попадания при одном выстреле в мишень для них равны p1 = 0,8 и p2 = 0,6. Каждый сделал по одному выстрелу, причем в результате в мишени оказалась одна пробоина. Найти вероятность того, что промахнулся второй.
Зададим гипотезы: Н1 = {оба стрелка либо попали, либо промахнулись}, H2 = {попал только первый}, H3 = {попал только второй}. Подсчитаем их вероятности: P( H1 ) = p1p2 + q1q2 = 0,56 , P( H2 ) = p1q2 = 0,32 , P( H3 ) = q1p2 = 0,12 . Сумма их вероятностей равна 1.
Событие А = {в мишени оказалась ровно 1 пробоина} осуществилось, т.е. данная задача на формулу Байеса. Событие {при одной пробоине промахнулся второй} это гипотеза H2 . По формуле Байеса
т. к. Р(А/Н1) = 0 , Р(А/Н2) = Р(А/Н3) = 1 . Значение Р(А), вычисленное по формуле полной вероятности, совпадает с результатом, вычисленным ранее в §8 другим способом. Итак, в среднем среди каждых 11 исходов, заканчивающихся одним попаданием, 8 соответствуют варианту H2 = {первый попал, второй промахнулся}, а остальные три H3.
Пример 2. (см. пример 2 из §9)
В ящике лежат 10 теннисных мячей, в том числе 8 новых и 2 играных. Для игры наудачу выбираются 2 мяча и после игры возвращаются обратно. Затем для второй игры наудачу извлекаются еще 2 мяча, оказавшиеся новыми. Какова вероятность, что первая игра также проводилась новыми мячами?
Событие А = {для второй игры взяты два новых мяча}, осуществилось. Поэтому задача решается по формуле Байеса. Нас интересует вероятность Р(H1 / А) , где, напомним, гипотеза H1 ={для первой игры взяты 2 новых мяча}. Подставим в формулу Байеса вероятности, подсчитанные в §9.
Постановки задач, подобных изложенным в §9 и в §10, встретятся при решении задачи №1 из контрольной работы.
Комментарии к задаче №2 §11. Повторные независимые испытания
Пусть проводится n последовательных испытаний. Предположим, что эти испытания независимые, т.е. вероятность осуществления очередного исхода не зависит от реализации исходов предыдущих испытаний. Рассмотрим простейший случай, когда различных исходов всего два (“успех” и “неуспех”). Более того, речь пойдет о случае, когда вероятность “успеха” в каждом из испытаний неизменна и равна p, т.е. вероятность “неуспеха” также неизменна и равна q = 1 p . Такие испытания называются испытаниями Бернулли.
Простейшими примерами здесь могут служить: последовательное бросание монеты (с вероятностью “успеха” выпадения “орла” равной 0,5); последовательная стрельба по мишени с постоянной вероятностью “успеха” попадания в каждом выстреле; извлечение из урны, содержащей шары двух цветов, по одному шару с возвращением (и перемешиванием); и т. д.
Я. Бернулли вычислил вероятность того, что в n последовательных “испытаниях Бернулли” произойдет ровно k “успехов”
(о
вычислении числа
см.
§4).
Пример 1. Вероятность того, что при 4 бросках игральной кости выпадут ровно 2 “четверки”, равна
Здесь p вероятность выпадения “четверки” в одном броске равна 1/6, q = 5/6 , общее число испытаний n = 4 , число “успехов” k = 2 .
Пример 2. Вероятность попадания в мишень при одном выстреле p = 0,6 . Какова вероятность, что при пяти выстрелах будет 3 попадания?
Здесь n = 5 , k = 3 , q = 1 p = 0,4 ,
.
Пример 3. В урне 4 белых и 2 черных шара. 6 раз извлекают по 1 шару, записывают цвет, а шар возвращают в урну и перемешивают шары. Какова вероятность, что среди записанных шаров более 4 белых?
Пусть “успех” состоит в том, что вынут белый шар. Тогда p= 4/6 = 2/3 ( из 6 шаров 4 белых ), q = 1 p = 1/3 . По условию n= 6 , k = 5 или k = 6 , откуда искомая вероятность
.
Пример 4. Вероятность попадания в мишень при одном выстреле p = 0,6 . Какова вероятность, что третье попадание произойдет в пятом выстреле?
Эта задача отличается от рассмотренной в примере 2 : там третье попадание может произойти и раньше пятого выстрела. Искомое событие является произведением двух следующих (независимых): А = {в первых 4 выстрелах ровно 2 попадания} и В={в пятом выстреле попадание}. P(A) вычисляется по формуле Бернулли
,
a P(B) = p = 0,6 . Поэтому искомая вероятность равна
В общем случае вероятность того, что к-й “успех” произойдет ровно в n-м испытании Бернулли, равна
.
Пример 5. Вероятность попадания в мишень при одном выстреле p = 0,6 . Какова вероятность, что в 5 выстрелах произойдет хотя бы 2 попадания?
Мы
знаем, что Р5(0)
+ Р5(1)
+ Р5(2)
+ Р5(3)
+ Р5(4)
+ Р5(5)
= 1. В данной задаче нас интересует сумма
четырех последних слагаемых:
Заметим, что проще воспользоваться вероятностью противоположного события:1P5(0)P5(1)=10,455