
- •Лекция 1
- •Минералогия как наука, связь минералогии с другими предметами
- •Объекты и содержание минералогии
- •Значение минералов для человека
- •История развития минералогии
- •История развития минералогии в России
- •Рекомендуемая литература по минералогии
- •Лекция 2
- •Минералы в строении вселенной Минералы метеоритов
- •Строение земной коры и минералогическая зональность
- •Химическая связь. Теория кристаллического поля
- •Кристаллическая структура минералов
- •Принцип плотнейшей упаковки атомов и ионов
- •Особенности кристаллических веществ
- •Лекция 3
- •Способы изображения кристаллических структур минералов
- •Аморфные и скрытокристаллические минералы
- •Полиморфизм и полиморфные модификации
- •Изоструктурные минералы
- •Твердые растворы
- •Псевдоморфозы (ложные кристаллы)
- •Явление изоморфизма
- •Типы изоморфизма
- •Лекция 4
- •Химический состав минералов
- •Химические анализы
- •Расчет формул минералов
- •Расчет формулы сфалерит
- •Расчет формулы граната
- •Причины кристаллизации минералов
- •Закон постоянства гранных углов
- •Двойниковые сростки кристаллов
- •Лекция 5
- •Микрорельеф поверхности кристаллов
- •Пирамиды и зоны роста кристаллов
- •Расщепленные кристаллы, скелетные кристаллы и дендриты, метасомы, пойкилосомы
- •Включения в кристаллах
- •Облик и габитус кристаллов (морфология минералов)
- •Морфология кристаллических агрегатов
- •Лекция 6
- •Физические и химические свойства минералов
- •Анизотропия свойств кристаллов
- •Физические свойства изоморфных смесей
- •Оптические свойства
- •Отражение и преломление света
- •Поляризация и двойное лучепреломление
- •Светопроницаемость (прозрачность)
- •Лекция 7
- •Окраска минералов
- •Собственные окраски минералов Окраска за счет избирательного светопоглощения
- •Анизотропия окраски
- •Игра и переливы цвета
- •Чужеродные окраски
- •Лекция 8
- •Цвет черты
- •Люминесценция
- •Плотность
- •Механические свойства
- •Твердость
- •Спайность, излом
- •Лекция 9
- •Прочность минералов
- •Магнитные свойства минералов
- •Электрические свойства
- •Пьезоэлектричество
- •Пироэлектричество
- •Радиоактивность
- •Лекция 10
- •Определение и описание минералов
- •Макроскопическая идентификация минералов
- •Физические свойства минералов
- •Морфология кристаллов
- •Цвет и черта
- •Твердость
- •Шкала твердости Мооса
- •Плотность и методы ее определения
- •Лекция 11
- •Спайность, отдельность и излом
- •Прочность
- •Специальные физические тесты
- •Люминесценция
- •Магнетизм
- •Электрические свойства
- •Радиоактивность
- •Минеральные ассоциации
- •Химические тесты при изучении минералов
- •Растворимость
- •Вкус и запах
- •Лекция 12
- •Лабораторные методы определения минералов
- •Устройство микроскопа
- •Оптические методы определения минералов
- •Изучение прозрачности
- •Изучение формы зерен
- •Исследование включений
- •Определение оптического класса
- •Определение показателя преломления
- •Изучение окраски минерала и плеохроизма
- •Определение силы двупреломления
- •Угол погасания
- •Изучение минералов в сходящемся свете
- •Лекция 13
- •Основные методы определения ювелирных минералов
- •Рефрактометр. Определение показателя преломления
- •Полярископ
- •Рефлектометр
- •Определение окраски ювелирных камней
- •Цветной фильтр Челси
- •Дихроизм и дихроскоп
- •Спектроскоп
- •Лекция 14
- •Методы исследования структуры минералов
- •Дифракция рентгеновских лучей
- •Виды дифракционных исследований
- •Порошковый метод рентгенографии
- •Монокристалльный метод рентгенографии
- •Дифракция нейтронов
- •Дифракция электронов и электронный микроскоп
- •Методы исследования химического состава минералов
- •Электронно-зондовый микроанализ
- •Рентгеновский флуоресцентный анализ
- •Лекция 15
- •Генетическая минералогия
- •Среды минералообразования
- •Причины и способы минералообразования
- •Типы минеральных месторождений
- •Лекция 16
- •Эндогенное минералообразование
- •Магматический этап минералообразования (магматические минеральные месторождения)
- •Лекция 17
- •Минеральные ассоциации пегматитов
- •Гидротермальное минералообразование
- •Контактово-метасоматическое минералообразования
- •Скарны и грейзены
- •Метаморфическое минералообразование
- •Лекция 18
- •Экзогенное минералообразование Минералы коры выветривания
- •Минералы осадочных пород
- •Обломочные осадочные месторождения
- •Хемогенные осадочные месторождения
- •Биогенные осадочные месторождения
- •Диагенетическое минералообразование
- •Методические указания
- •Приложения
- •Плотность минералов
- •Твердость минералов-эталонов в шкале Мооса
- •Магнитность ряда минералов
- •Минералы магматических пород
- •Минералы пегматитов
Изучение окраски минерала и плеохроизма
Это важное свойство, которым обладают окрашенные минералы. Подавляющее большинство минералов, обладающих плеохроизмом, макроскопически его не проявляют, т. к. для этого нужны специальные условия наблюдения (на просвет), а многие, прекрасно плеохроирующие минералы из-за своего темного цвета в больших зернах, не просвечивают (например, биотит и роговая обманка). Для наблюдения плеохроизма достаточно вращать столик микроскопа и наблюдать изменение цвета минерала (без анализатора).
Несмотря на то, что минерал может быть окрашен в разных породах по-разному, у него есть какой-то чаще других встречающийся цвет, который является основным. Окраска минерала, обусловленная его внутренними свойствами, называется идиохроматической, а зависящая от примесей – аллохроматической. При прохождении через любое вещество интенсивность света всегда уменьшается, т. к. свет частично поглощается этим веществом. Если все длины волн белого света поглощаются (абсорбируют) равномерно, то вещество будет казаться бесцветным. Если какие-то длины волн поглощаются более интенсивно, то вещество будет казаться окрашенным. Оптически изотропные вещества обладают равномерной абсорбцией, поэтому при вращении столика микроскопа их окраска не будет изменяться. Однако чаще всего мы имеем дело с оптически анизотропными средами, обладающими избирательной абсорбцией. Такая избирательная абсорбция называется плеохроизмом (дихроизмом в одноосных минералах). Цвет окрашенных анизотропных минералов может меняться в зависимости от направления колебаний проходящего через него света. В двуосных минералах подобный эффект называется плеохроизмом3, т. к. в этих минералах могут существовать три разных направления поглощения света. Таким образом, свойство плеохроизма связано с различием показателей преломления по разным осям. Если разница между главными показателями преломления достаточно велика, изменение цвета – явление плеохроизма – выступает отчетливо, если разница несущественна – плеохроизма нет или он выражен очень слабо. В одном и том же минерале в зависимости от разреза интенсивность плеохроизма различна. А отдельные разрезы (перпендикулярные оптической оси) не обладают плеохроизмом.
Плеохроизм объясняется различным поглощением света определенной длины волны по разным направлениям, совпадающим с определенным показателем преломления. Поэтому мало установить наличие плеохроизма, необходимо выяснить, какому направлению соответствует та или иная окраска. Дихроизм и плеохроизм оцениваются в таком положении кристалла, когда каждая главная ось индикатрисы параллельна плоскости колебаний поляризатора. Необходимо отметить относительную степень поглощения света в трех направлениях и составить схему абсорбции. Приведем примеры подобных описаний изменения окраски: роговая обманка – по Np – бледно-желтая, по Ng – зеленая, по Nm – желто-зеленая (схема абсорбции Ng > Nm > Nm); биотит – по Nm – желтая, по Ng – темно-коричневая, по Nm – темно-коричневая (схема абсорбции Ng = Nm > Np), турмалин – по Np – темно-зеленый, по Ng – темно-желтый, (схема абсорбции Nр > Ng).