Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_po_zhbk_ekzamen.doc
Скачиваний:
211
Добавлен:
22.05.2017
Размер:
2.05 Mб
Скачать

5. Бетон как материал для железобетонных конструкций. Основные свойства бетона, структура бетона и её влияние на прочностные и деформативные свойства бетона.

Бетон состоит из крупного и мелкого заполнителей, соединенных между собой цементного камня, а также воды и пор. В нагруженном бетонном образце напряжения концентрируются на частицах с большим модулем упругости, а также в местах расположения пустот. При этом в сжатом образце вокруг пустоты или частицы заполнителя образуется поля как сжимающих, так и растягивающих напряжений. Разрушение бетонных образцов (кубов или призм) под действием продольной нагрузки происходит из-за разрыва бетона в поперечном направлении (вторичного поля напряжений).

Механизм разрушения бетонных кубов:

  • Концентрация напряжений в бетоне

  • Разрушение куба при наличие трения по поверхностям куба и плиты пресса

  • Разрушение куба при отсутствии трения по поверхностям куба и плиты

Деформативность – это свойство тела изменять размеры и форму под воздействием различных факторов.

Принято различать силовые и объемные деформации.

К объемным деформациям относятся: деформации усадки, набухания, температурные деформации.

Объёмные деформации – это деформации вследствие физико-химических процессов при твердении бетона, испарение или поглощение воды, а также в результате изменений температуры.

Силовые деформации – это деформации под воздействием силовых факторов, приложенных однократно или в течение времени.

Рассматривается опытный образец (призма) с приборами для измерения деформаций. К призме порциями прикладывается постепенно увеличивающаяся нагрузка, вплоть до разрушения образца. На каждом этапе дается определенная выдержка (15-20 мин.) и измеряются продольные деформации бетона. База прибора (длина на которой измеряются продольные деформации) составляет 100-200мм для механических приборов и 20-50мм для электротензодатчиков.

Отношение величин поперечных деформаций к продольным даёт значение коэффициента Пуассона. Деформации достигнутые при разрушении называются предельными. При нагружении образцов с постоянной скоростью деформирования можно наблюдать нисходящую ветвь диаграммы.

Предельные деформации бетона - это деформации перед разрушением образца. В сжатых элементах при кратковременных испытаниях предельные деформации составляют lim = (80 - 300)·10-5, в среднем 250·10-5. В растянутых элементах lim= (10 - 25) ·10-5, в среднем 15·10-5.

При длительном действии нагрузки предельные деформации могут превышать кратковременные деформации в 1,5 - 3 раза.

Структура бетона и ее влияние на прочность и деформативность

Структура бетона оказывает большое влияние на прочность и деформативность бетона. Чтобы уяснить этот вопрос, рассмотрим схему физико-химического про­цесса образования бетона. При затворении водой смеси из заполнителей и цемента начинается химическая реак­ция соединения минералов цемента с водой, в результа­те которой образуется гель — студнеобразная пористая масса со взвешенными в воде, еще не вступившими в хи­мическую реакцию, частицами цемента и незначительны­ми соединениями в виде кристаллов. В процессе переме­шивания бетонной смеси гель обволакивает отдельные зерна заполнителей, постепенно твердеет, а кристаллы постепенно соединяются в кристаллические сростки, рас­тущие с течением времени. Твердеющий гель превраща­ется в цементный камень, скрепляющий зерна крупных и мелких заполнителей в монолитный твердый матери­ал — бетон.

Существенно важным фактором, влияющим на струк­туру и прочность бетона, является количество воды, при­меняемое для приготовления бетонной смеси, оценивае­мое водоцементным отношением W/C (отношением взве­шенного количества воды к количеству цемента в едини­це объема бетонной смеси). Для химического соединения с цементом необходимо, чтобы W/C≈O,2. Однако по технологическим соображениям — для достижения до­статочной подвижности и удобоукладываемости бетонной смеси — количество воды берут с некоторым избыт­ком. Так, подвижные бетонные смеси, заполняющие фор­му под влиянием текучести, имеют W/C —0,5...0,6, а жест­кие бетонные смеси, заполняющие форму под влиянием механической виброобработки, имеют W/C=0,3...0,4.

Избыточная, химически несвязанная вода частью вступает впоследствии в химическое соединение с менее активными частицами цемента, а частью заполняет мно­гочисленные поры и капилляры в цементном камне и по­лостях между зернами крупного заполнителя и стальной арматурой и, постепенно испаряясь, освобождает их. По данным исследований, поры занимают около трети объе­ма цементного камня; с уменьшением W/C пористость цементного камня уменьшается и прочность бетона уве­личивается. Поэтому в заводском производстве железо­бетонных изделий применяют преимущественно жесткие бетонные смеси с возможно меньшим значением W/C. Бетоны из жестких смесей обладают большей прочно­стью, требуют меньшего расхода цемента и меньших сро­ков выдержки изделий в формах.

Таким образом, структура бетона оказывается весьма неоднородной: она образуется в виде пространственной решетки из цементного камня, заполненной зернами пес­ка и щебня различной крупности и формы, пронизанной большим числом микропор и капилляров, содержащих химически несвязанную воду, водяные пары и воздух. Физически бетон представляет собой капиллярно-пори­стый материал, в котором нарушена сплошность массы и присутствуют все три фазы — твердая, жидкая и газо­образная. Цементный камень также обладает неоднород­ной структурой и состоит из упругого кристаллического сростка и наполняющей его вязкой массы — геля.

Длительные процессы, происходящие в таком матери­але, — изменение водного баланса, уменьшение объема твердеющего вязкого геля, рост упругих кристалличес­ких сростков — наделяют бетон своеобразными упруго-пластическими свойствами. Эти свойства проявляются в характере деформирования бетона под нагрузкой, во взаимодействии с температурно-влажностным режимом окружающей среды.