Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 семестр / Вопросы к экзамену.docx
Скачиваний:
115
Добавлен:
16.02.2017
Размер:
1.16 Mб
Скачать

Численное значение магнитной постоянной

Численное значение магнитной постоянной вытекает из определения ампера, единицы силы электрического тока, являющегося одной из основных единиц СИ. Согласно определению, принятому IX Генеральной конференцией по мерам и весам (ГКМВ) в 1948 году, «Ампер есть сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2·10−7 ньютона»[2][3].

С другой стороны, сила взаимодействия двух расположенных на расстоянии друг от друга бесконечных параллельных проводников, по которым текут токи и , приходящаяся на единицу длины, выражается соотношением:

С учётом определения ампера из этого соотношения следует точное равенство:

 Гн/м

Соответственно выполняется:

 Гн/м Н/А2.

В материальных уравнениях, в вакууме, через магнитную проницаемость связаны вектор напряжённости магнитного поля H и вектор магнитной индукции B:

Через магнитную постоянную осуществляется связь между относительной и абсолютной магнитной проницаемостью.

Прежде, чем перейти к примерам расчёта магнитных полей, напомним, что точно тот же самый метод мы использовали и при рассмотрении электростатических полей. Что являлось «элементарным кирпичиком» электростатического поля? Поле точечного заряда. А далее, используя принцип суперпозиции электрических полей, мы получали возможность рассчитать поле любого заряда, разделяя его на составляющие точечные заряды.

Рассмотрим поле, создаваемое током I, текущим по тонкому проводу, имеющему форму окружности радиуса R (рис. 1.7).

Рис. 1.7

      Определим магнитную индукцию на оси проводника с током на расстоянии х от плоскости кругового тока. Векторы перпендикулярны плоскостям, проходящим через соответствующиеи. Следовательно, они образуют симметричный конический веер. Из соображения симметрии видно, что результирующий векторнаправлен вдоль оси кругового тока. Каждый из вектороввносит вклад равный, авзаимно уничтожаются. Но,, а т.к. угол междуиα – прямой, тотогда получим

 

,

 (1.6.1)

 

      Подставив в (1.6.1) и, проинтегрировав по всему контуру, получим выражение для нахождениямагнитной индукции кругового тока:

 

,

 (1.6.2)

 

При , получиммагнитную индукцию в центре кругового тока:

 

,

 (1.6.3)

 

      Заметим, что в числителе (1.6.2)   – магнитный момент контура. Тогда, на большом расстоянии от контура, при, магнитную индукцию можно рассчитать по формуле:

 

,

 (1.6.4)

 

      Силовые линии магнитного поля кругового тока хорошо видны в опыте с железными опилками.

  1. Теорема Гаусса для поля B, отсутствие в природе магнитного монополя. Наглядное представление магнитного поля с помощью картины силовых линий

Как было показано выше, в природе нет магнитных зарядов. В 1931 г. П. Дирак высказал предположение о существовании обособленных магнитных зарядов, названных впоследствии монополи Дирака. Однако до сих пор они не найдены. Это приводит к тому, что линии вектора не имеют ни начала, ни конца. Мы знаем, что поток любого вектора через поверхность равен разности числа линий, начинающихся у поверхности, и числа линий, оканчивающихся внутри поверхности:

 .

В соответствии с вышеизложенным, можно сделать заключение, что поток вектора через замкнутую поверхность должен быть равен нулю.

Таким образом, для любого магнитного поля и произвольной замкнутой поверхности S имеет место условие:

 

,

 (1.7.1)

 

Это теорема Гаусса для  (в интегральной форме): поток вектора магнитной индукции через любую замкнутую поверхность равен нулю.

Этот результат является математическим выражением того, что в природе нет магнитных зарядов – источников магнитного поля, на которых начинались и заканчивались бы линии магнитной индукции.

Заменив поверхностный интеграл в (1.7.1) объемным, получим:

 

,

 (1.7.2)

 

где – оператор Лапласа.

Это условие должно выполняться для любого произвольного объема V, а это, в свою очередь, возможно, если подынтегральная функция в каждой точке поля равна нулю. Таким образом, магнитное поле обладает тем свойством, что его дивергенция всюду равна нулю:

 

 или 

 (1.7.3)

 

В этом его отличие от электростатического поля, которое является потенциальным и может быть выражено скалярным потенциалом φмагнитное поле – вихревое, или соленоидальное (см. рис. 1.3 и 1.8).

                  

Рис. 1.9

Компьютерная модель магнитного поля Земли, подтверждающая вихревой характер, изображена на рис. 1.9.

Рис 1.10

На рисунке 1.10 показаны магнитное поле постоянного магнита. Линии магнитной индукции замыкаются в окружающем пространстве.

  1. Фундаментальное уравнение для циркуляции магнитного поля. Примеры расчёта магнитного поля в случаях высокой симметрии распределения порождающих поле токов.

Теорема о циркуляции магнитного поля — одна из фундаментальных теорем классической электродинамики, сформулированная Андре Мари Ампером в 1826 году. В 1861 году Джеймс Максвелл снова вывел эту теорему, опираясь на аналогии с гидродинамикой, и обобщил ее. Уравнение, представляющее собой содержание теоремы в этом обобщенном виде, входит в число уравнений Максвелла. (Для случая постоянных электрических полей — то есть в принципе вмагнитостатике— верна теорема в первоначальном виде, сформулированном Ампером и приведенном в статье первым; для общего случая правая часть должна быть дополнена членом с производной напряженности электрического поля по времени — см. ниже). Теорема гласит:

Циркуляция магнитного поля постоянных токов по всякому замкнутому контуру пропорциональна сумме сил токов, пронизывающих контур циркуляции.

Эта теорема, особенно в иностранной или переводной литературе, называется также теоремой Ампера или законом Ампера о циркуляции (англ. Ampère’s circuital law). Последнее название подразумевает рассмотрение закона Ампера в качестве более фундаментального утверждения, чем закон Био — Савара — Лапласа, который в свою очередь рассматривается уже в качестве следствия (что, в целом, соответствует современному варианту построения электродинамики).

Для общего случая (классической) электродинамики формула должна быть дополнена в правой части членом, содержащим производную по времени от электрического поля (см. уравнения Максвелла, а также параграф «Обобщение» ниже). В таком дополненном виде она представляет собой четвёртое уравнение Максвелла в интегральной форме.

Соседние файлы в папке 1 семестр