Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Учебники / Gene Therapy of Cochlear Deafness - Present Concepts and Future Aspects Ryan 2009

.pdf
Скачиваний:
135
Добавлен:
07.06.2016
Размер:
6.89 Mб
Скачать

28 Erkman L, McEvilly RJ, Luo L, Ryan AK, Hooshmand F, O’Connell SM, Keithley EM, Rapaport DH, Ryan AF, Rosenfeld MG: Role of transcription factors Brn- 3.1 and Brn-3.2 in auditory and visual system development. Nature 1996;381:603–606.

29Ryan AF, Dulon D, Pak K, Mullen L, Li Y, Erkman L: Developmental regulation of pou4f3 gene expres-

sion by 5 DNA. Submitted, 2009.

30 Hertzano R, Dror AA, Montcouquiol M, Ahmed ZM, Ellsworth B, Camper S, Friedman TB, Kelley MW, Avraham KB: Lhx3, a LIM domain transcription factor, is regulated by Pou4f3 in the auditory but not in the vestibular system. Eur J Neurosci 2007; 25:999–1005.

31 Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P: Prestin is the motor protein of cochlear outer hair cells. Nature 2000;405:149–155.

32 Tian Y, Li M, Fritzsch B, Zuo J: Creation of a transgenic mouse for hair-cell gene targeting by using a modified bacterial artificial chromosome containing Prestin. Dev Dyn 2004;231:199–203.

33 Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M, Beisel KW, Steel KP, Brown SD: A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 1995;374:62–64.

34 Boëda B, Weil D, Petit C: A specific promoter of the sensory cells of the inner ear defined by transgenesis. Hum Mol Genet 2001;10:1581–1589.

35 Hasson T, Gillespie PG, Garcia JA, MacDonald RB, Zhao Y, Yee AG, Mooseker MS, Corey DP: Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 1997;137:1287–1307.

36 Sakaguchi N, Henzl MT, Thalmann I, Thalmann R, Schulte BA: Oncomodulin is expressed exclusively by outer hair cells in the organ of Corti. J Histochem Cytochem 1998;46:29–40.

37 Park HJ, Niedzielski AS, Wenthold RJ: Expression of the nicotinic acetylcholine receptor subunit, alpha9, in the guinea pig cochlea. Hear Res 1997; 112:95–105.

38 Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J: Alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci USA 2001;98:3501–3506.

39 Sage C, Huang M, Vollrath MA, Brown MC, Hinds PW, Corey DP, Vetter DE, Chen ZY: Essential role of retinoblastoma protein in mammalian hair cell development and hearing. Proc Natl Acad Sci USA 2006;103:7345–7350.

114

40 Zelante L, Gasparini P, Estivill X, Melchionda S, D’Agruma L, Govea N, Milá M, Monica MD, Lutfi J, Shohat M, Mansfield E, Delgrosso K, Rappaport E, Surrey S, Fortina P: Connexin26 mutations associated with the most common form of non-syndromic neurosensoryautosomalrecessivedeafness(DFNB1) in Mediterraneans. Hum Mol Genet 1997;6: 1605– 1609.

41 Kikuchi T, Adams JC, Paul DL, Kimura RS: Gap junction systems in the rat vestibular labyrinth: immunohistochemical and ultrastructural analysis. Acta Otolaryngol 1994;114:520–528.

42 Zajic G, Nair TS, Ptok M, Van Waes C, Altschuler RA, Schacht J, Carey TE: Monoclonal antibodies to inner ear antigens: I. Antigens expressed by supporting cells of the guinea pig cochlea. Hear Res 1991;52:59–71.

43 Löwenheim H, Furness DN, Kil J, Zinn C, Gültig K, Fero ML, Frost D, Gummer AW, Roberts JM, Rubel EW, Hackney CM, Zenner HP: Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of Corti. Proc Natl Acad Sci USA 1999;96:4084–4088.

44 Doetzlhofer A, White P, Lee YS, Groves A, Segil N: Prospective identification and purification of hair cell and supporting cell progenitors from the embryonic cochlea. Brain Res 2006;1091:282–288.

45 Pirvola U, Cao Y, Oellig C, Suoqiang Z, Pettersson RF, Ylikoski J: The site of action of neuronal acidic fibroblast growth factor is the organ of Corti of the rat cochlea. Proc Natl Acad Sci USA 1995;92:9269– 9273.

46 McEwen DG, Ornitz DM: Regulation of the fibroblast growth factor receptor 3 promoter and intron I enhancer by Sp1 family transcription factors. J Biol Chem 1998;273:5349–5357.

47 Radde-Gallwitz K, Pan L, Gan L, Lin X, Segil N, Chen P: Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. J Comp Neurol 2004;477:412–421.

48 McEvilly RJ, Erkman L, Luo L, Sawchenko PE, Ryan AF, Rosenfeld MG: Requirement for Brn-3.0 in differentiation and survival of sensory and motor neurons. Nature 1996;384:574–577.

49 Leconte L, Santha M, Fort C, Poujeol C, Portier MM, Simonneau M: Cell type-specific expression of the mouse peripherin gene requires both upstream and intragenic sequences in transgenic mouse embryos. Brain Res Dev Brain Res 1996;92:1–9.

50 Hafidi A, Després G, Romand R: Ontogenesis of type II spiral ganglion neurons during development: peripherin immunohistochemistry. Int J Dev Neurosci 1993;11:507–512.

Ryan · Mullen · Doherty

51 Fina M, Ryan AF: Expression of mRNAs encoding alpha and beta subunit isoforms of Na,K-ATPase in the vestibular labyrinth and endolymphatic sac of the rat. Mol Cell Neurosci 1994;5:604–613.

52 Shyjan AW, Canfield VA, Levenson R: Evolution of the Na,K- and H,K-ATPase beta subunit gene family: structure of the murine Na,K-ATPase beta 2 subunit gene. Genomics 1991;11:435–442.

53 Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Fauré S, Gary F, Coumel P, Petit C, Schwartz K, Guicheney P: A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 1997;15:186–189.

54 Sakagami M, Fukazawa K, Matsunaga T, Fujita H, Mori N, Takumi T, Ohkubo H, Nakanishi S: Cellular localization of rat Isk protein in the stria vascularis by immunohistochemical observation. Hear Res 1991; 56:168–172.

55 Usami S, Takumi Y, Suzuki N, Oguchi T, Oshima A, Suzuki H, Kitoh R, Abe S, Sasaki A, Matsubara A: The localization of proteins encoded by CRYM, KIAA1199, UBA52, COL9A3, and COL9A1, genes highly expressed in the cochlea. Neuroscience 2008; 154:22–28.

56 Sun L, Pan X, Wada J, Haas CS, Wuthrich RP, Danesh FR, Chugh SS, Kanwar YS: Isolation and functional analysis of mouse UbA52 gene and its relevance to diabetic nephropathy. J Biol Chem 2002; 277:29953– 29962.

57 Steel KP: Perspectives: biomedicine. The benefits of recycling. Science 1999;285:1363–1364.

58 Ryan AF, Goodwin P, Woolf N, Sharp FR: Auditory stimulation alters the pattern of 2-deoxyglucose uptake in the inner ear. Brain Res 1982;234:213– 225.

59 Brigande JV, Gubbels SP, Woessner DW, Jungwirth JJ, Bresee CS: Electroporation-mediated gene transfer to the developing mouse inner ear. Methods Mol Biol 2009;493:125–139.

60 Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR: Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 2000;28:41–51.

61 Cereghini S, Yanic M: Assembly of transfected DNA into chromatin: structural changes in the origin- promoter-enhancer region upon replication. EMBO J 1984;3:1243–1253.

62 Fedor MJ, Daniell E: Acetylation of histone-like proteins of adenovirus type 5. J Virol 1980;35:637– 643.

63 Kitazono M, Chuman Y, Aikou T, Fojo T: Construction of gene therapy vectors targeting thyroid cells: enhancement of activity and specificity with histone deacetylase inhibitors and agents modulating the cyclic adenosine 3,5-monophosphate pathway and demonstration of activity in follicular and anaplastic thyroid carcinoma cells. J Clin Endocrinol Metab 2001;86:834–840.

64Taura A, Taura K, Choung YH, Masuda M, Pak K, Chavez E, Ryan AF: Histone deacetylase inhibition enhances adenoviral vector transduction in inner ear tissue. Submitted, 2009.

Allen F. Ryan, PhD

UCSD-SOM, Surgery/Otolaryngology

9500 Gilman Drive #0666, Fir Building, Room 110 La Jolla, CA 92093–0666 (USA)

Tel. +1 858 534 4594, Fax +1 858 534 5319, E-Mail afryan@ucsd.edu

Targeting Inner Ear Gene Therapy

115

Author Index

Baker, K. 52

 

Poulsen, D.J.

87

Brough, D.E.

52

Raphael, Y. 37

 

 

Dazert, S. 1

 

Rova, C. 87

 

Doherty, J.K.

99

Ryan, A.F. 1, 99

Husseman, J.

37

Sheffield, A.M. 13

 

 

Smith, R.J.H.

13

Kesser, B.W. 64

Staecker, H.

52

Lalwani, A.K.

64

Von Doersten, P.G. 87

Luebke, A.E.

87

 

 

Maeda, Y. 13

 

 

 

Mullen, L.M. 99

116

Subject Index

Adeno-associated virus (AAV) vectors advantages and limitations 29, 68 cellular tropism 68, 71, 95 endolymphatic system gene delivery 28 genome engineering 90, 91

inner ear targets 69, 93

perilymphatic system gene delivery 21, 27 purification 90

replication 69 serotypes 91

small interfering RNA delivery 31 transduction efficiency

overview 90 promoters 91, 93–96

Adenovirus vectors

advantages and limitations 29, 68 animal studies 40

cellular tropism 68, 71

delivery to inner ear 40–42, 54, 55 endolymphatic system gene delivery 28 gene transduction characteristics in inner

ear 39–42

genome modifications 39, 54, 69

hair cell regeneration gene therapy 45–47, 75

inner ear targets 69, 70

perilymphatic system gene delivery 27 protection of hair cells and neurons with

gene therapy 42–45, 75 receptor 41

small interfering RNA delivery 31 toxicity 88, 95

transduction efficiency cytomegalovirus promoter 88, 89 overview 87, 88

viral load 88, 90 vestibular regeneration

animal models 53 atoh1 gene therapy

delivery to aminoglycoside-treated macular organ cultures 56, 57

inner ear delivery efficiency 58–61

prospects 60 rationale 53, 54

balance disorder epidemiology 52 gene delivery to damaged macular

neuroepithelium, efficiency 55, 56 vestibular-ocular reflex and hair cell

loss 53

Antisense oligonucleotide (ASO) development 15, 16

principles of gene knockdown 15

Atoh1

adenovirus vector-mediated gene therapy overview 46, 47

vestibular regeneration

delivery to aminoglycoside-treated macular organ cultures 56, 57 inner ear delivery efficiency 58–61

prospects 60 rationale 53, 54

gene therapy and hair cell regeneration 10 regulatory elements 107

Balance disorders, see Vestibular regeneration Brain lipid-binding protein promoter, adeno-

associated virus vectors 94 Brain-derived neurotrophic factor (BDNF)

adenovirus vector-mediated gene therapy for protection of hair cells and neurons 43

spiral ganglion cell survival gene therapy 74

117

CAG promoter, adeno-associated virus vectors 92, 93

CDH23, gene therapy targeting 76 Challenges, gene therapy 7, 8 Ciliary-derived neurotrophic factor (CDNF),

adenovirus vector-mediated gene therapy for protection of hair cells and neurons 44

Cochleostomy, adenovirus vector delivery 40, 41

Cytomegalovirus promoter adeno-associated virus vectors 91, 93, 95 adenovirus vectors 88, 89

Deafness

etiology 64, 65

gene mutations 1, 9, 10 gene therapy targets 76, 77

Decoy oligodeoxynucleotides, gene

knockdown 15–17

DFNA5, mutations in deafness 14 DFNB1, gene therapy targeting 77 Distortion product otoacustic emission

(DPOAE), adenovirus vector toxicity 88, 89

DNA methylation, gene expression regulation 100, 101

Dominant negative mutation overview 3

phenotypes and deafness 14

Endolymphatic system, gene delivery 28 Enhancer, gene expression regulation 101,

102

Ethics, gene therapy 8, 9

Gene delivery, inner ear, see also Adenovirus vectors

advantages and limitations of approaches 28, 29, 66, 67

animal models 24–27 endolymphatic system 28 perilymphatic system

direct approaches 21, 27 indirect approaches 27

principles 65, 66 rationale 37, 38

route of delivery 38, 39

Gene regulatory elements, see Regulatory elements

Gene repair, strategy 6

Gene replacement, principles 6

Gene silencing approaches 15–21

dominant disorder management 6 GJB2

gene therapy targeting 77 mutations in deafness 9, 14 RNA interference 80

GLAST promoter, adeno-associated virus vectors 95

Glial fibrillary acid protein (GFAP), adenoassociated virus vectors 93, 94

Glial-derived neurotrophic factor (GDNF) adenovirus vector-mediated gene therapy

for protection of hair cells and neurons 43, 44

spiral ganglion cell survival gene therapy 74, 75

Hair cell

adenovirus vector-mediated gene therapy protection 42–45, 74

regeneration 10, 45–47, 75 Atoh1 gene therapy for vestibular

regeneration

delivery to aminoglycoside-treated macular organ cultures 56, 57 inner ear delivery efficiency 58–61

prospects 60 rationale 53, 54

gene regulatory elements 106–109 iron chelator protection 75 permanent loss in mammals 65

Hammerhead ribozyme, gene knockdown 17, 18

Hearing loss, see Deafness

Herpes simplex virus (HSV) vectors advantages and limitations 68 cellular tropism 68, 71, 72 engineering 71

inner ear targets 72, 73

Iron chelators, hair cell protection 75

KCNE1, gene therapy targeting 76, 77

KCNQ1, gene therapy targeting 76, 77 KCNQ4, mutations in deafness 14

Lentivirus vectors

advantages and limitations 68 cellular tropism 68, 72, 73 inner ear targets 73

118

Subject Index

Liposome vectors

advantages and limitations 68 cellular tropism 68 mechanisms 73, 74

Loss-of-function mutation definition 3

gene therapy 4

Math1, see Atoh1

MicroRNA, gene expression regulation 101 MYO6, gene therapy targeting 76

MYO7A

gene regulatory elements 106 gene therapy targeting 76

MYO15, gene therapy targeting 76

PCDH15, gene therapy targeting 76 Perilymphatic system, gene delivery

direct approaches 21, 27 indirect approaches 27 Polygenic disorders, heredity 4

Regulatory elements

gene expression regulation 101, 102 identification 104

inner ear gene therapy ganglion neurons 109, 110 hair cells 106–109 limitations 111

miscellaneous promoters 110, 111 overview 104–106

prospects for study 111, 112 spiral ligament 110

stria vascularis 110 supporting cells 109

Repressor, gene expression regulation 101, 102 RNA interference

disease models for gene therapy 22, 23 GJB2 80

mechanism 19–21

small interfering RNA 18, 19 vectors

expression vectors 30 liposomes 30

viral vectors 31

Round window membrane (RWM), gene delivery 21, 29

SANS, gene therapy targeting 76

Severe combined immunodeficiency disease (SCID), gene therapy 2, 6

Small interfering RNA, see RNA interference Spiral ganglion cell (SGC)

gene regulatory elements 109, 110 gene therapy for survival 74, 75

Spiral ligament, gene regulatory elements 110 Stem cell transplantation

adult cells 79

embryonic or neonatal cells 78, 79 inner ear delivery 79, 80 rationale 77, 78

Stria vascularis, gene regulatory elements 110

Transcription factors, gene expression regulation 101–103

Transforming growth factor-β (TGF-β), adenovirus vector-mediated gene therapy for protection of hair cells and neurons 43

Usher’s syndrome, gene therapy targets 77 USH1C, gene therapy targeting 76

Vaccinia virus, gene therapy vectors 73 Vestibular regeneration

adenovirus-mediated gene therapy atoh1 gene therapy

delivery to aminoglycoside-treated macular organ cultures 56, 57 inner ear delivery efficiency 58–61

prospects 60 rationale 53, 54

animal models 53

balance disorder epidemiology 52 gene delivery to damaged macular neuroepithelium, efficiency

55, 56

vestibular-ocular reflex and hair cell loss 53

Subject Index

119