
- •1. Трансформаторы
- •2. Асинхронные машины.
- •3. Синхронные машины.
- •4. Машины постоянного тока.
- •5. Лабораторные работы.
- •Введение
- •1. Трансформаторы
- •1.1. Назначение трансформаторов
- •1.2. Принцип работы трансформаторов
- •1.3. Режимы работы трансформатора
- •1.4. Уравнения напряжений трансформатора
- •1.5. Уравнения магнитодвижущих сил и токов
- •1.6. Приведение вторичных величин к первичной обмотке
- •1.7. Электрическая схема замещения и векторная диаграмма трансформатора
- •1.8. Трансформация трехфазных токов. Схемы, обозначения, основные соотношения
- •1.9. Экспериментальное определение параметров схемы замещения трансформатора
- •1.10. Выражение электрических величин и параметров трансформатора в относительных единицах
- •1.11. Группы соединения обмоток трансформаторов
- •1.12. Несимметричная нагрузка трехфазных трансформаторов. Метод симметричных составляющих
- •1.13. Схемы замещения и сопротивления трансформатора для токов прямой и обратной последовательностей
- •1.14. Схемы замещения и сопротивления трансформатора для токов нулевой последовательности
- •1.15. Параметры схем замещения нулевой последовательности. Магнитные потоки нулевой последовательности в трансформаторах. Сопротивление нулевой последовательности
- •1.16. Трансформация несимметричных токов
- •1.17. Магнитные поля и эдс при несимметричной нагрузке
- •1.18. Искажение симметрии вторичных напряжений при несимметричной нагрузке
- •1.19. Внешняя характеристика трансформатора
- •1.20. Потери и кпд трансформатора
- •1.21. Автотрансформаторы
- •1.22. Параллельное включение трансформаторов
- •2.1. Назначение и области применения асинхронных машин
- •2.2. Устройство асинхронных двигателей
- •2.3. Принцип действия асинхронных машин
- •2.4. Магнитная цепь асинхронной машины
- •2.5. Уравнения напряжений асинхронного двигателя
- •2.6. Уравнения мдс и токов асинхронного двигателя
- •2.7. Приведение параметров обмотки ротора и векторная диаграмма асинхронного двигателя
- •2.8. Потери и кпд асинхронного двигателя
- •2.9. Электромагнитный момент и механические характеристики асинхронного двигателя
- •2.10. Добавочные электромагнитные моменты
- •2.11. Рабочие характеристики асинхронного двигателя
- •2.12. Пуск асинхронных двигателей с фазным ротором
- •2.13. Пуск асинхронных двигателей с короткозамкнутым ротором
- •2.14. Асинхронные короткозамкнутые двигатели с улучшенными пусковыми свойствами
- •2.15. Способы регулирования частоты вращения
- •2.16. Регулирование частоты вращения изменением угловой скорости поля
- •2.17. Регулирование частоты вращения без полезного использования мощности скольжения
- •2.18. Регулирование частоты вращения с использованием мощности скольжения
- •2.19. Однофазные и конденсаторные асинхронные двигатели
- •3.1. Назначение синхронных машин
- •3.2. Устройство синхронных машин
- •3.3. Принцип работы синхронной машины
- •3.4. Возбуждение синхронных машин
- •3.5. Работа синхронного генератора при холостом ходе
- •3.6. Реакция якоря синхронной машины при симметричной нагрузке
- •3.7. Уравнения напряжений на зажимах синхронного генератора
- •3.8. Изменение напряжения при нагрузке
- •3.9. Характеристика короткого замыкания, отношение короткого замыкания
- •3.10. Внешние, регулировочные и нагрузочные характеристики синхронного генератора
- •3.11. Потери и кпд синхронного генератора
- •3.12. Параллельная работа синхронных машин
- •3.13. Регулирование активной и реактивной мощности синхронного генератора
- •3.14. U-образные характеристики синхронного генератора
- •3.15. Электромагнитный момент и перегрузочная способность синхронной машины
- •3.16. Синхронный двигатель и синхронный компенсатор
- •4. Машины постоянного тока
- •4.1. Назначение машин постоянного тока
- •4.2. Принцип работы машин постоянного тока
- •4.3. Обмотки якоря
- •4.4. Электродвижущая сила и электромагнитный момент машины постоянного тока
- •4.5. Магнитное поле машины постоянного тока
- •4.6. Устранение вредного влияния реакции якоря
- •4.7. Способы возбуждения машин постоянного тока
- •4.8. Коммутация
- •4.9. Причины искрения щеток
- •4.10. Способы улучшения коммутации
- •4.11. Генераторы постоянного тока
- •4.12. Преборазование энергии в генераторах постоянного тока
- •4.13. Характеристики генераторов постоянного тока
- •4.14. Двигатели постоянного тока и их характеристики
- •5. Лабораторные работы
- •4. Обработка результатов измерений
- •5. Содержание отчета
- •6. Контрольные вопросы
- •Лабораторная работа №2. Исследование однофазного автотрансформатора
- •1. Цель работы
- •2. Описание лабораторной установки
- •3. Порядок выполнения работы
- •4. Обработка результатов измерений
- •5. Содержание отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 3. Исследование схем и групп соединения обмоток трехфазного трансформатора
- •1. Цель работы
- •2. Описание лабораторной установки
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Контрольные вопросы
- •Лабораторная работа № 4. Исследование трёхфазного трансформатора при несимметричной нагрузке
- •1. Цель работы
- •2. Описание лабораторной установки
- •3. Порядок выполнения работы
- •4. Обработка результатов измерений
- •5. Содержание отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 5. Определение сопротивления нулевой последовательности трехфазного трансформатора
- •1. Цель работы
- •2. Описание лабораторной установки
- •3. Порядок выполнения работы
- •4. Обработка результатов измерений
- •3. Порядок выполнения работы
- •4. Обработка результатов измерений
- •6. Содержание отчета
- •7. Контрольные вопросы
- •Лабораторная работа №7. Испытание генератора пoстоянного тока
- •1. Цель работы
- •2. Описание лабораторной установки
- •3. Порядок выполнения работы
- •4. Обработка результатов измерений
- •6. Содержание отчета
- •7. Контрольные вопросы
- •1. Цель работы
- •2. Описание лабораторной установки
- •3. Порядок выполнения работы
- •4. Обработка результатов измерений
- •6. Содержание отчета
- •7. Контрольные вопросы
- •Заключение
- •Литература
- •424001, Г. Йошкар-Ола, пл. Ленина, 1
1.21. Автотрансформаторы
Автотрансформатор – это трансформатор, в котором кроме магнитной имеется электрическая связь между первичной и вторичной обмотками. Префикс «авто» (греч. «сам») означает, что в автотрансформаторе часть обмотки действует одновременно как первичная и как вторичная обмотка трансформатора.
На
рисунке 1.19
показана автотрансформаторная схема
включения трансформатора, предназначенная
для передачи электрической энергии из
входной сети с напряжением U
в выходную сеть с напряжением
.
Рис. 1.19.
Принципиальные схемы однофазного и
трехфазного повышающего автотрансформатора,
зависимость значений мощностей
и
от коэффициента трансформации.
В
схеме используется двухобмоточный
трансформатор с обмотками 1
и 2,
расположенными на одном стержне. Для
наглядности обмотки 1
и 2
показаны на различных участках стержня
по высоте. Первичная обмотка трансформатора
1
включается на напряжение сети низшего
напряжения U.
Вторичная обмотка включается между
зажимом а(Х)
входной сети и зажимом х
выходной сети таким образом, чтобы ее
напряжение
добавлялось к напряжениюU
и увеличивало его до напряжения
.
Вторичная
обмотка автотрансформатора электрически
контактирует с входной и выходной сетями
в отличие от обычного трансформатора.
Поэтому изоляция вторичной обмотки
должна быть рассчитана на наибольшее
из напряжений
и
(в схеме для повышения напряжения порисунку 1.19
–
на напряжение
),
а не на напряжение
,
как в обычном трансформаторе.
Коэффициент
трансформации
автотрансформатора:
,
где
.
В описание электромагнитных процессов в схеме автотрансформатора входят уравнения трансформатора (слева) и уравнения, которые описывают схему автотрансформатора (справа).
|
|
Полную мощность автотрансформатора без учета потерь можно представить в виде двух составляющих:
,
и
,
где
мощность
передается электромагнитным путем из
первичной сети во вторичную;
передается электрическим путем.
Баланс мощности при этом не нарушается:
.
В
автотрансформаторе мощность
,
передаваемая электромагнитным путем
составляет лишь часть полной мощностиS,
поэтому автотрансформатор обычно
значительно меньше по своим размерам
и дешевле, чем трансформатор, имеет
более высокий КПД.
Отношение
мощности передаваемой электромагнитным
путем
к полной мощностиS
называют коэффициентом
выгодности:
,
где
для повышающего автотрансформатора.
Применение
автотрансформатора тем выгоднее, чем
менее коэффициент трансформации
отличается от единицы. Поэтому
автотрансформаторы обычно применяются
при
,
т.е. в случае, когда удорожание изоляции
вторичной обмотки окупается общим
уменьшением массы автотрансформатора
и уменьшением потерь.
Под
номинальной
мощностью автотрансформатора
понимается полная мощность
.
Один из недостатков автотрансформатора – высокий ток короткого замыкания. Установившийся ток при коротком замыкании в обмотке 2:
,
где
– сопротивление короткого замыкания
трансформатора при короткозамкнутой
обмотке1
и питании со стороны обмотки 2;
– ток короткого замыкания в обмотке2
этого трансформатора при напряжении
на обмотке2.
Таким образом, ток короткого замыкания
в обмотке 2
трансформатора, включенного по
автотрансформаторной схеме, в
раз превышает ток короткого замыкания
того же трансформатора, включенного по
обычной схеме.
Из-за отсутствия электрической изоляции (сетевой или гальванической развязки) между первичной и вторичной обмотками трансформатора при использовании автотрансформатора в схемах понижения напряжения между проводами сети НН и землей возникает напряжение приблизительно равное напряжению между проводом и землей на стороне ВН.
Для обеспечения электробезопасности обслуживающего персонала не допускается применять автотрансформаторы для понижения напряжения сети, подводимого непосредственно к потребителям.
В энергетических системах наряду с однофазными автотрансформаторами часто применяются трехфазные двух- и трехобмоточные автотрансформаторы. Широкое распространение имеют автотрансформаторы с переменным коэффициентом трансформации – регулируемые автотрансформаторы. Принципиальная схема регулируемого лабораторного авторансформатора (ЛАТР) с сетевой развязкой показана на рисунке 1.20. Сетевая развязка обеспечивается разделительным трансформатором Т, вторичная обмотка которого не заземлена.
Рис. 1.20 Схема регулируемого лабораторного автотрансформатора АТ с гальванической развязкой через разделительный трансформатор Т.
Часть обмоток трехфазного трансфоматора может быть соединена по автотрансформатортной схеме. Так, на рисунке 1.21, показана схема трехфазного трансформатора Y0.авто/Δ-0-11 и соответствующая векторная диаграмма фазных напряжений.
Рис. 1.21. Схема соединения обмоток и соовтетствующая векторная диаграмма трехфазного трансформатора со схемой соединения обмоток Y0.авто/Δ-0-11.
Группа 0 образуется в автотрансформаторной обмотке. Группа 11 – между автотрансформаторными обмотками и обмоткой, соединенной по схеме «треугольник».