
- •Оглавление
- •От авторов
- •1. Основы сетей передачи данных
- •1. Эволюция компьютерных сетей
- •Два корня компьютерных сетей
- •Первые компьютерные сети
- •Конвергенция сетей
- •2. Общие принципы построения сетей
- •Простейшая сеть из двух компьютеров
- •Сетевое программное обеспечение
- •Физическая передача данных по линиям связи
- •Проблемы связи нескольких компьютеров
- •Обобщенная задача коммутации
- •Выводы
- •Вопросы и задания
- •3. Коммутация каналов и пакетов
- •Коммутация каналов
- •Коммутация пакетов
- •Выводы
- •Вопросы и задания
- •4. Архитектура и стандартизация сетей
- •Декомпозиция задачи сетевого взаимодействия
- •Модель OSI
- •Стандартизация сетей
- •Информационные и транспортные услуги
- •Выводы
- •Вопросы и задания
- •5. Примеры сетей
- •Обобщенная структура телекоммуникационной сети
- •Корпоративные сети
- •Интернет
- •Выводы
- •Вопросы и задания
- •6. Сетевые характеристики
- •Типы характеристик
- •Производительность
- •Надежность
- •Характеристики сети поставщика услуг
- •Выводы
- •Вопросы и задания
- •7. Методы обеспечения качества обслуживания
- •Обзор методов обеспечения качества обслуживания
- •Анализ очередей
- •Техника управления очередями
- •Механизмы кондиционирования трафика
- •Обратная связь
- •Резервирование ресурсов
- •Инжиниринг трафика
- •Работа в недогруженном режиме
- •Выводы
- •Вопросы и задания
- •2. Технологии физического уровня
- •8. Линии связи
- •Классификация линий связи
- •Типы кабелей
- •Выводы
- •Вопросы и задания
- •9. Кодирование и мультиплексирование данных
- •Модуляция
- •Дискретизация аналоговых сигналов
- •Методы кодирования
- •Мультиплексирование и коммутация
- •Выводы
- •Вопросы и задания
- •10. Беспроводная передача данных
- •Беспроводная среда передачи
- •Беспроводные системы
- •Технология широкополосного сигнала
- •Выводы
- •Вопросы и задания
- •11. Первичные сети
- •Сети PDH
- •Сети SONET/SDH
- •Сети DWDM
- •Сети OTN
- •Выводы
- •Вопросы и задания
- •3. Локальные вычислительные сети
- •Общая характеристика протоколов локальных сетей на разделяемой среде
- •Ethernet со скоростью 10 Мбит/с на разделяемой среде
- •Технологии Token Ring и FDDI
- •Беспроводные локальные сети IEEE 802.11
- •Выводы
- •Вопросы и задания
- •13. Коммутируемые сети Ethernet
- •Мост как предшественник и функциональный аналог коммутатора
- •Коммутаторы
- •Скоростные версии Ethernet
- •Архитектура коммутаторов
- •Выводы
- •Вопросы и задания
- •14. Интеллектуальные функции коммутаторов
- •Алгоритм покрывающего дерева
- •Агрегирование линий связи в локальных сетях
- •Фильтрация трафика
- •Виртуальные локальные сети
- •Ограничения коммутаторов
- •Выводы
- •Вопросы и задания
- •4. Сети TCP/IP
- •15. Адресация в стеке протоколов TCP/IP
- •Стек протоколов TCP/IP
- •Формат IP-адреса
- •Система DNS
- •Протокол DHCP
- •Выводы
- •Вопросы и задания
- •16. Протокол межсетевого взаимодействия
- •Схема IP-маршрутизации
- •Маршрутизация с использованием масок
- •Фрагментация IP-пакетов
- •Выводы
- •Вопросы и задания
- •17. Базовые протоколы TCP/IP
- •Протоколы транспортного уровня TCP и UDP
- •Общие свойства и классификация протоколов маршрутизации
- •Протокол RIP
- •Протокол OSPF
- •Маршрутизация в неоднородных сетях
- •Протокол BGP
- •Протокол ICMP
- •Выводы
- •Вопросы и задания
- •Фильтрация
- •Стандарты QoS в IP-сетях
- •Трансляция сетевых адресов
- •Групповое вещание
- •IPv6 как развитие стека TCP/IP
- •Маршрутизаторы
- •Выводы
- •Вопросы и задания
- •5. Технологии глобальных сетей
- •19. Транспортные услуги и технологии глобальных сетей
- •Базовые понятия
- •Технология Frame Relay
- •Технология ATM
- •Виртуальные частные сети
- •IP в глобальных сетях
- •Выводы
- •Вопросы и задания
- •20. Технология MPLS
- •Базовые принципы и механизмы MPLS
- •Протокол LDP
- •Мониторинг состояния путей LSP
- •Инжиниринг трафика в MPLS
- •Отказоустойчивость путей MPLS
- •Выводы
- •Вопросы и задания
- •21. Ethernet операторского класса
- •Обзор версий Ethernet операторского класса
- •Технология EoMPLS
- •Ethernet поверх Ethernet
- •Выводы
- •Вопросы и задания
- •22. Удаленный доступ
- •Схемы удаленного доступа
- •Коммутируемый аналоговый доступ
- •Коммутируемый доступ через сеть ISDN
- •Технология ADSL
- •Беспроводной доступ
- •Выводы
- •Вопросы и задания
- •23. Сетевые службы
- •Электронная почта
- •Веб-служба
- •IP-телефония
- •Протокол передачи файлов
- •Выводы
- •Вопросы и задания
- •24. Сетевая безопасность
- •Типы и примеры атак
- •Шифрование
- •Антивирусная защита
- •Сетевые экраны
- •Прокси-серверы
- •Протоколы защищенного канала. IPsec
- •Сети VPN на основе шифрования
- •Выводы
- •Вопросы и задания
- •Ответы на вопросы
- •Алфавитный указатель
Протокол LDP |
|
|
709 |
Таблица 20.5. Запись в таблице продвижения LSR3 |
|
||
Входнойинтерфейс |
Метка |
Следующийхоп |
Действия |
SO |
132 |
S1 |
Pop |
Работа устройства LSR3 несколько отличается от работы устройств LSR1 и LSR2, так как оно является предпоследним устройством LSR для пути LSP1. В соответствии с за писью в табл. 22.4 устройство LSR3 выполняет выталкивание (Pop) из стека метки 132, относящейся к пути LSP1, выполняя операцию РНР. В результате верхней меткой стека становится метка 315, принадлежащая пути LSP3.
Устройство LER2 продвигает поступивший на его входной интерфейс SO кадр на основе своей записи таблицы продвижения (табл. 20.6). Устройство LER2 сначала заменяет метку 315 пути LSP3 значением 317, затем проталкивает ее на дно стека и помещает на вершину стека метку 188, которая является меткой пути LSP2, внутреннего для домена 2. Переме щение кадра вдоль пути LSP2 происходит аналогичным образом.
Таблица 20.6. Запись в таблице продвижения LER2 |
|
||
Входной интерфейс |
Метка |
Следующий хоп |
Действия |
SO |
315 |
S1 |
317 |
|
|
|
Push |
|
|
|
188 |
Описанная модель двухуровневого пути легко может быть расширена для любого коли чества уровней.
Протокол LDP
Протокол распределения меток (Label Distribution Protocol, LDP) позволяет автомати чески создавать в сети пути LSP в соответствии с существующими в таблицах маршру тизации записях о маршрутах в IP-сети. Протокол LDP принимает во внимание только те записи таблицы маршрутизации, которые созданы с помощью внутренних протоколов маршрутизации, то есть протоколов типа IGP, поэтому режим автоматического создания LSP с помощью протокола LDP иногда называют режимом MPLS IGP (в отличие от режима MPLS ТЕ, когда маршруты выбираются из соображений инжиниринга трафика ине совпадают с маршрутами, выбранными внутренними протоколами маршрутизации). Еще режим MPLS ЮР называют ускоренной MPLS-коммутацией, это название отражает начальную цель разработчиков технологии MPLS, которая состояла только в ускорении продвижения ІР-пакетов с помощью техники виртуальных каналов. Спецификация LDP
дается в RFC 50 3 6 ( http://w w w .rfc-editor.org/rfc/rfc5036.txt).
Рассмотрим работу протокола LDP на примере сети, изображенной на рис. 20.7.
710 |
Глава 20. Технология MPLS |
Сеть |
Следующий |
хоп |
|
132.100.0.0 |
LSR2 |
105.0.0.0 |
LSR4 |
192.201.103.0 |
LSR4 |
Рис. 20.7. MPLS-сеть с устройствами LSR,поддерживающими LDP
Все устройства LSR поддерживают сигнальный протоколраспределения меток (LDP). От устройства LSR1 в сети уже установлен один путь LSP1 —по этому пути идет трафик к сетям 105.0.0.0 и 192.201.103.0. Это значит, что таблица FTN (отображающая сети назна чения на LSP) у LSR1 соответствует табл. 20.7.
Таблица 20.7.Таблица FTNустройства LSR1
Признаки FEC |
Метка |
105.0.0.0; 192.201.103.0 |
231 |
Метка 231 в этой таблице соответствует пути LSP1.
Мы рассмотрим функционирование протокола LDP в ситуации, когда в результате работы протоколов маршрутизации или же после ручной модификации администратором сети в таблице маршрутизации устройства LSR1 появилась запись о новой сети назначения, для которой в сети поставщика услуг еще не проложен путь коммутации по меткам. В нашем случае это сеть 132.100.0.0 и для нее нет записи в таблице FTN.
В этом случае устройства LSR1 автоматически инициирует процедуру прокладки ново го пути. Для этого оно запрашивает по протоколу LDP метку для новой сети 132.100.0.0 у маршрутизатора, ІР-адрес которого в таблице маршрутизации указан для данной сети как адрес следующего хопа.
Однако для того чтобы воспользоваться протоколом LDP, нужно сначала установить между устройствами LSR сеанс LDP, так как этот протокол работает в режиме установления соединений.
Протокол LDP |
711 |
Сеансы LDP устанавливаются между соседними маршрутизаторами автоматически. Для этого каждое устройство LSR, на котором развернут протокол LDP, начинает посылать сво им соседям сообщения Hello. Эти сообщения посылают по групповому 1Р-адресу 224.0.0.2, который адресуется ко всем маршрутизаторам подсети и определенному порту UDP. Если соседний маршрутизатор также поддерживает протокол LDP, то он в ответ устанавливает сеанс TCP через порт 646 (этот порт закреплен за протоколом LDP).
В результате обмена сообщениями Hello все поддерживающие протокол LDP устройства LSR обнаруживают своих соседей и устанавливают с ними сеансы, как показано на рис. 20.8 (для простоты на рисунке представлены не все сеансы LDP, существующие в сети).
Рис. 20.8. Сеансы LDPустанавливаются между непосредственными соседями
Будем считать, что между устройствами LSR1 и LSR2 установлен сеанс LDP.
Тогда при обнаружении новой записи в таблице маршрутизации, указывающей на устрой ство LSR2 в качестве следующего хопа, устройство LSR1 просит устройство LSR2 назна чить метку для нового пути к сети 132.100.0.0. Говорят, что устройство LSR2 находится ниже по потоку (downstream) для устройства LSR1 относительно пути к сети 132.100.0.0. Соответственно устройство LSR1 расположено выше по потоку для устройства LSR2 от носительно сети 132.100.0.0. Естественно, что для других сетей назначения у устройства LSR1 имеются другие соседи вниз по потоку, а у устройства LSR2 —другие соседи вверх по потоку.
Причина, по которой значение метки для нового пути выбирается соседом ниже по пото ку, понятна —эта метка, которая имеет локальное значение на двухточечном соединении между соседними устройствами, будет использоваться именно этим устройством для того, чтобы понимать, к какому пути LSP относится пришедший MPLS-кадр. Поэтому
712 |
Глава 20. Технология MPLS |
устройство ниже по потоку выбирает уникальное значение метки, исходя из неисполь зованных значений меток для своего интерфейса, который связывает его с соседом выше по потоку.
Для получения значения метки устройство LSR1 выполняет запрос метки протокола LDP. Формат такого запроса достаточно прост (рис. 20.9).
Запрос метки (0x0401) Длина сообщения
Идентификатор сообщения Элемент FEC
Рис. 20.9. Формат LDP-запроса метки
Идентификатор сообщения требуется для того, чтобы при получении ответа можно было однозначно сопоставить ответ некоторому запросу (устройство может послать несколько запросов до получения ответов на каждый из них).
В нашем примере в качестве элемента FEC будет указан адрес 132.100.0.0.
Устройство LSR2, приняв запрос, находит, что у него также нет проложенного пути к сети 132.100.0.0, поэтому оно передает LDP-запрос следующему устройству LSR, адрес которо го указан в его таблице маршрутизации в качестве следующего хопа для сети 132.100.0.0. В примере, показанном на рис. 20.8, таким устройством является LSR3, на котором путь коммутации по меткам должен закончиться, так как следующий хоп ведет за пределы MPLS-сети данного оператора.
ПРИМЕЧАНИЕ--------------------------------------------------------------------------------------------------
Возникает вопрос, как устройство LSR3 узнает о том, что является последним в сети поставщика услуг на пути к сети 132.100.0.0? Дело в том, что LDP является протоколом, ориентированным на соединение, и при установлении логического LDP-соединения возможно применение автоматической аутентификации устройств, так что сеансы LDP устанавливаются только между устройствами одного поставщика услуг, который задает для всех принадлежащих его сети устройств LSR соответствующую информацию для взаимной аутентификации.
Устройство LSR3, обнаружив, что для пути к сети 132.100.0.0 оно является пограничным, назначает для прокладываемого пути метку, еще не занятую его входным интерфейсом S0, и сообщает об этой метке устройству LSR2 в LDP-сообщении, формат которого представ лен на рис. 20.10. Пусть это будет метка 231.
Отображение метки (0x0400) |
Длина сообщения |
Идентификатор сообщения
Элемент FEC
Метка
Рис. 20.10. Формат отображения метки на элемент FEC протокола LDP
Протокол LDP |
713 |
В свою очередь, LSR2 назначает неиспользуемую его интерфейсом SO метку и сообщает об этом в LDP-сіобщении отображения метки устройству LSR1. После этого новый путь коммутации по меткам, ведущий от LSR1 к сети 132.100.0.0, считается проложенным (рис. 20.11), и вдоль него пакеты начинают передаваться уже на основе меток и таблиц продвижения, а не ІР-адресов и таблиц маршрутизации.
Было бы нерационально прокладывать отдельный путь для каждой сети назначения каж дого маршрутизатора. Поэтому устройства LSR стараются строить агрегированные пути коммутации по меткам и передавать вдоль них пакеты, следующие к некоторому набору сетей. Так, на рис. 20.11 устройство LSR1 передает по пути LSP1 пакеты, следующие не только к сети 132.100.0.0, но и к сетям 194.15.17.0 и 201.25.10.0, информация о которых появилась уже после того, как путь LSP2 был проложен.
Мы рассмотрели только один режим работы протокола LDP, который носит сложное на звание «Упорядоченный режим управления распределением меток с запросом устройства вниз по потоку». Здесь под упорядоченным режимом понимается такой режим, когда неко торое промежуточное устройство LSR не передает метку для нового пути устройству LSR, лежащему выше по потоку, до тех пор, пока не получит метку для этого пути от устройства LSR, лежащего ниже по потоку. В нашем случае устройство LSR2 ждало получения метки от LSR3 и уже потом передало метку устройству LSR1.
Существует и другой режим управления распределением меток, который называется не зависимым. При независимом управлении распределением меток LSR может назначить