
- •Оглавление
- •От авторов
- •1. Основы сетей передачи данных
- •1. Эволюция компьютерных сетей
- •Два корня компьютерных сетей
- •Первые компьютерные сети
- •Конвергенция сетей
- •2. Общие принципы построения сетей
- •Простейшая сеть из двух компьютеров
- •Сетевое программное обеспечение
- •Физическая передача данных по линиям связи
- •Проблемы связи нескольких компьютеров
- •Обобщенная задача коммутации
- •Выводы
- •Вопросы и задания
- •3. Коммутация каналов и пакетов
- •Коммутация каналов
- •Коммутация пакетов
- •Выводы
- •Вопросы и задания
- •4. Архитектура и стандартизация сетей
- •Декомпозиция задачи сетевого взаимодействия
- •Модель OSI
- •Стандартизация сетей
- •Информационные и транспортные услуги
- •Выводы
- •Вопросы и задания
- •5. Примеры сетей
- •Обобщенная структура телекоммуникационной сети
- •Корпоративные сети
- •Интернет
- •Выводы
- •Вопросы и задания
- •6. Сетевые характеристики
- •Типы характеристик
- •Производительность
- •Надежность
- •Характеристики сети поставщика услуг
- •Выводы
- •Вопросы и задания
- •7. Методы обеспечения качества обслуживания
- •Обзор методов обеспечения качества обслуживания
- •Анализ очередей
- •Техника управления очередями
- •Механизмы кондиционирования трафика
- •Обратная связь
- •Резервирование ресурсов
- •Инжиниринг трафика
- •Работа в недогруженном режиме
- •Выводы
- •Вопросы и задания
- •2. Технологии физического уровня
- •8. Линии связи
- •Классификация линий связи
- •Типы кабелей
- •Выводы
- •Вопросы и задания
- •9. Кодирование и мультиплексирование данных
- •Модуляция
- •Дискретизация аналоговых сигналов
- •Методы кодирования
- •Мультиплексирование и коммутация
- •Выводы
- •Вопросы и задания
- •10. Беспроводная передача данных
- •Беспроводная среда передачи
- •Беспроводные системы
- •Технология широкополосного сигнала
- •Выводы
- •Вопросы и задания
- •11. Первичные сети
- •Сети PDH
- •Сети SONET/SDH
- •Сети DWDM
- •Сети OTN
- •Выводы
- •Вопросы и задания
- •3. Локальные вычислительные сети
- •Общая характеристика протоколов локальных сетей на разделяемой среде
- •Ethernet со скоростью 10 Мбит/с на разделяемой среде
- •Технологии Token Ring и FDDI
- •Беспроводные локальные сети IEEE 802.11
- •Выводы
- •Вопросы и задания
- •13. Коммутируемые сети Ethernet
- •Мост как предшественник и функциональный аналог коммутатора
- •Коммутаторы
- •Скоростные версии Ethernet
- •Архитектура коммутаторов
- •Выводы
- •Вопросы и задания
- •14. Интеллектуальные функции коммутаторов
- •Алгоритм покрывающего дерева
- •Агрегирование линий связи в локальных сетях
- •Фильтрация трафика
- •Виртуальные локальные сети
- •Ограничения коммутаторов
- •Выводы
- •Вопросы и задания
- •4. Сети TCP/IP
- •15. Адресация в стеке протоколов TCP/IP
- •Стек протоколов TCP/IP
- •Формат IP-адреса
- •Система DNS
- •Протокол DHCP
- •Выводы
- •Вопросы и задания
- •16. Протокол межсетевого взаимодействия
- •Схема IP-маршрутизации
- •Маршрутизация с использованием масок
- •Фрагментация IP-пакетов
- •Выводы
- •Вопросы и задания
- •17. Базовые протоколы TCP/IP
- •Протоколы транспортного уровня TCP и UDP
- •Общие свойства и классификация протоколов маршрутизации
- •Протокол RIP
- •Протокол OSPF
- •Маршрутизация в неоднородных сетях
- •Протокол BGP
- •Протокол ICMP
- •Выводы
- •Вопросы и задания
- •Фильтрация
- •Стандарты QoS в IP-сетях
- •Трансляция сетевых адресов
- •Групповое вещание
- •IPv6 как развитие стека TCP/IP
- •Маршрутизаторы
- •Выводы
- •Вопросы и задания
- •5. Технологии глобальных сетей
- •19. Транспортные услуги и технологии глобальных сетей
- •Базовые понятия
- •Технология Frame Relay
- •Технология ATM
- •Виртуальные частные сети
- •IP в глобальных сетях
- •Выводы
- •Вопросы и задания
- •20. Технология MPLS
- •Базовые принципы и механизмы MPLS
- •Протокол LDP
- •Мониторинг состояния путей LSP
- •Инжиниринг трафика в MPLS
- •Отказоустойчивость путей MPLS
- •Выводы
- •Вопросы и задания
- •21. Ethernet операторского класса
- •Обзор версий Ethernet операторского класса
- •Технология EoMPLS
- •Ethernet поверх Ethernet
- •Выводы
- •Вопросы и задания
- •22. Удаленный доступ
- •Схемы удаленного доступа
- •Коммутируемый аналоговый доступ
- •Коммутируемый доступ через сеть ISDN
- •Технология ADSL
- •Беспроводной доступ
- •Выводы
- •Вопросы и задания
- •23. Сетевые службы
- •Электронная почта
- •Веб-служба
- •IP-телефония
- •Протокол передачи файлов
- •Выводы
- •Вопросы и задания
- •24. Сетевая безопасность
- •Типы и примеры атак
- •Шифрование
- •Антивирусная защита
- •Сетевые экраны
- •Прокси-серверы
- •Протоколы защищенного канала. IPsec
- •Сети VPN на основе шифрования
- •Выводы
- •Вопросы и задания
- •Ответы на вопросы
- •Алфавитный указатель
616 |
Глава 18. Дополнительные функции маршрутизаторов ІР-сетей |
таких расчетов нужно знать пути потоков через сеть. Такие пути определяются таблицами маршрутизации, которые строятся протоколом маршрутизации, например RIP или OSPF (либо их комбинацией, если в сети используются несколько протоколов маршрутизации класса IGP), или вручную. Поэтому для ручного или автоматизированного расчета нужно знать таблицы маршрутизации всех маршрутизаторов сети и следить за их изменениями, а это непросто, учитывая, что отказы линий связи или маршрутизаторов приводят к пере стройке таблиц. Нужно также учитывать, что маршрутизаторы могут применять методы балансировки нагрузки, разделяя агрегированный поток на несколько подпотоков, что также усложняет расчеты.
«Улучшенная» версия DiffServ, обеспечивающая учет адресов назначения, повышает качество услуг оператора связи, но вместе с тем усложняет саму идею метода, в основе которого лежит идея независимого обслуживания классов трафика каждым маршрути затором сети.
Трансляция сетевых адресов
Маршрутизация в составной сети осуществляется на основе тех адресов назначения, кото рые помещены в заголовки пакетов. Как правило, эти адреса остаются неизменными с мо мента их формирования отправителем до момента поступления на узел получателя. Однако из этого правила есть исключения. Например, в широко применяемой сегодня технологии трансляции сетевых адресов (Network Address Translation, NAT) предполагается продви жение пакета во внешней сети (в Интернете) на основании адресов, отличающихся от тех, которые используются для маршрутизации пакета во внутренней (корпоративной) сети.
Причины подмены адресов
Одной из наиболее популярных причин использования технологии NAT является дефицит ІР-адресов. Если по каким-либо причинам предприятию, у которого имеется потребность подключиться к Интернету, не удается получить у поставщика услуг необходимого коли чества глобальных ІР-адресов, то оно может прибегнуть к технологии NAT. В этом случае для адресации внутренних узлов служат специально зарезервированные для этих целей частные адреса. Мы уже рассказывали о них в главе 15.
Для того чтобы узлы с частными адресами могли связываться через Интернет между собой или с узлами, имеющими глобальные адреса, необходимо использовать технологию NAT.
Технология NAT также оказывается полезной, когда предприятие из соображений безопас ности желает скрыть адреса узлов своей сети, чтобы не дать возможности злоумышлен никам составить представление о структуре и масштабах корпоративной сети, а также о структуре и интенсивности исходящего и входящего трафиков.
Традиционная технология NAT
Технология трансляции сетевых адресов имеет несколько разновидностей, наиболее попу лярная из которых —традиционная технология трансляции сетевых адресов —позволяет узлам из частной сети прозрачным для пользователей образом получать доступ к узлам внешних сетей. Подчеркнем, что в данном варианте NAT решается проблема организации только тех сеансов связи, которые исходят из частной сети. Направление сеанса в данном
Трансляция сетевых адресов |
617 |
случае определяется положением инициатора: если обмен данными инициируется прило жением, работающем на узле внутренней сети, то сеанс называется исходящим несмотря нато, что в его рамках в сеть могут поступать данные извне1.
Идея технологии NAT состоит в следующем. Пусть сеть предприятия образует тупико вый домен, узлам которого присвоены частные адреса (рис. 18.7). На маршрутизаторе, связывающем сеть предприятия с внешней сетью, установлено программное обеспечение NAT. Это NAT-устройство динамически отображает набор частных адресов {IP*} на набор глобальных адресов {IP}, полученных предприятием от поставщика услуг и присвоенных внешнему интерфейсу маршрутизатора предприятия.
Внутренняя сеть
Важным для работы NAT-устройства является правило распространения маршрутных объявлений через границы частных сетей. Объявления протоколов маршрутизации
овнешних сетях «пропускаются» пограничными маршрутизаторами во внутренние сети и обрабатываются внутренними маршрутизаторами. Обратное утверждение неверно — маршрутизаторы внешних сетей не получают объявлений о внутренних сетях, объявления
оних отфильтровываются при передаче на внешние интерфейсы. Поэтому внутренние маршрутизаторы «знают» маршруты ко всем внешним сетям, а внешним маршрутизаторам ничего не известно о существовании частных сетей.
Традиционная технология NAT подразделяется на технологии базовой трансляции сетевых адресов (Basic Network Address Translation, Basic NAT) и трансляции сетевых адресов и портов (Network Address Port Translation, NAPT). В технологии Basic NAT для отображения используются только ІР-адреса, а в технологии NAPT —еще и так на зываемые транспортные идентификаторы, в качестве которых чаще всего выступают TCP- и UDP-порты.
1Традиционная технология NAT в виде исключения допускает сеансы обратного направления, за
ранеевыполняя статическое взаимно однозначное отображение внутренних и внешних адресов для некоторого ограниченного набора узлов.
618 |
Глава 18. Дополнительные функции маршрутизаторов ІР-сетей |
Базовая трансляция сетевых адресов
Если количество локальных узлов, которым необходимо обеспечить выход во внешнюю сеть, меньше или равно имеющегося количества глобальных адресов, то для каждого частного адреса гарантировано однозначное отображение на глобальный адрес. В каждый момент времени количество внутренних узлов, которые получают возможность взаимо действовать с внешней сетью, ограничивается количеством адресов в глобальном наборе. Понятно, что в такой ситуации целью трансляции является не столько решение проблемы дефицита адресов, сколько обеспечение безопасности.
Внутренняя сеть А
Сеть 10.0.2.0/24 |
|
|
|
|
Таблица NAT-отображения |
||
|
Частные |
Глобальные |
|
Внутренняя сеть В |
адреса |
адреса |
|
10.0.1.4 |
181.230.25.1 |
||
|
|||
|
10.0.2.15 |
181.230.25.2 |
|
|
10.0.2.3 |
181.230.25.3 |
10.0.1.2 \
185.127.125.2
185.127.125.3
185.127.125.4
Внешняя
сеть
Сеть 10.0.1.0/24
Таблица NAT-отображения
Частные |
Глобальные |
адреса |
адреса |
10.0.1.1 |
185.127.125.2 |
10.0.1.2 |
185.127.125.3 |
10.0.1.4 |
185.127.125.4 |
Рис. 18.8. Базовая трансляция сетевых адресов для исходящих сеансов
Трансляция сетевых адресов |
619 |
Частные адреса некоторых узлов могут отображаться на глобальные адреса статически. К таким узлам можно обращаться извне, используя закрепленные за ними глобальные адреса. Соответствие внутренних адресов внешним задается таблицей, поддерживаемой маршрутизатором или другим устройством (например, брандмауэром), на котором уста новлено программное обеспечение NAT.
В нескольких тупиковых доменах могут быть совпадающие частные адреса. Например,
всетях А и В на рис. 18.8 для внутренней адресации применяется один и тот же блок адре сов 10.0.1.0/24. В то же время адреса внешних интерфейсов обеих сетей (181.230.25.1/24, 181.230.25.2/24 и 181.230.25.3/24 в сети А и 185.127.125.2/24, 185.127.125.3/24 и 185.127.125.4/24 в сети В) уникальны глобально, то есть никакие другие узлы в составной сети их не используют. В данном примере в каждой из сетей только три узла имеют возмож ность «выхода» за пределы сети своего предприятия. Статическое соответствие частных адресов этих узлов глобальным адресам задано в таблицах пограничных устройств обеих сетей.
Когда узел 10.0.1.4 сети А посылает пакет хосту 10.0.1.2 сети В, то он помещает в заголовок пакета в качестве адреса назначения глобальный адрес 185.127.125.3/24. Узел-источник направляет пакет своему маршрутизатору R1 по умолчанию, которому известен маршрут к сети 185.127.125.0/24. Маршрутизатор передает пакет на пограничный маршрутизатор R2, которому также известен маршрут к сети 185.127.125.0/24. Перед отправкой пакета модуль NAT, работающий на данном пограничном маршрутизаторе, используя таблицу отображения, заменяет в поле адреса источника частный адрес 10.0.1.4 соответствующим емуглобальным адресом 181.230.25.1/24. Когда пакет после путешествия по внешней сети поступает на внешний интерфейс NAT-устройства сети В, глобальный адрес назначения 185.127.125.3/24 преобразуется в частный адрес 10.0.1.2. Пакеты, передаваемые в обратном направлении, проходят аналогичную процедуру трансляции адресов.
Заметим, что в описанной операции не требуется участия узлов отправителя и получателя, то есть она прозрачна для пользователей.
Трансляция сетевых адресов и портов
Пусть некоторая организация имеет частную IP-сеть и глобальную связь с поставщиком услуг Интернета. Внешнему интерфейсу пограничного маршрутизатора R2 назначен глобальный адрес, а остальным узлам сети организации назначены частные адреса. NAPT позволяет всем узлам внутренней сети одновременно взаимодействовать с внешними сетями, используя единственный зарегистрированный IP-адрес. Возникает законный во прос, каким образом внешние пакеты, поступающие в ответ на запросы из частной сети, находят узел-отправитель, ведь в поле адреса источника всех пакетов, отправляющихся во внешнюю сеть, помещается один и тот же адрес —адрес внешнего интерфейса погра ничного маршрутизатора?
Для однозначной идентификации узла отправителя привлекается дополнительная ин формация. Если в IP-пакете находятся данные протокола UDP или TCP, то в качестве такой информации выступают номер UDPили TCP-порта соответственно. Но и это не вносит полной ясности, поскольку из внутренней сети может исходить несколько запро сов с совпадающими номерами портов отправителя, а значит, опять возникает вопрос об однозначности отображения единственного глобального адреса на набор внутренних адресов. Решение состоит в том, что при прохождении пакета из внутренней во внешнюю сеть каждой паре {внутренний частный адрес; номер TCPили UDP-порта отправителя}
620 |
Глава 18. Дополнительные функции маршрутизаторов ІР-сетей |
ставится в соответствие пара {глобальный ІР-адрес внешнего интерфейса; назначенный номер TCPили UDP-порта}. Назначенный номер порта выбирается произвольно, однако должно быть выполнено условие его уникальности в пределах всех узлов, получающих выход во внешнюю сеть. Соответствие фиксируется в таблице.
Эта модель при наличии единственного зарегистрированного IP-адреса, полученного от поставщика услуг, удовлетворяет требованиям по доступу к внешним сетям большинства сетей средних размеров.
На рис. 18.9 приведен пример, когда в тупиковой сети А используются внутренние адреса из блока 10.0.0.0. Внешнему интерфейсу маршрутизатора этой сети поставщиком услуг назначен адрес 181.230.25.1.
Внутренняя сеть
Частный |
Порт |
Глобальный |
Назначенный |
адрес |
|
адрес |
порт |
10.0.1.4 |
1245 |
181.230.25.1 |
3451 |
10.0.2.15 |
1245 |
181.230.25.1 |
3452 |
10.0.2.3 |
1045 |
181.230.25.1 |
3455 |
Рис. 18.9. Трансляция сетевых адресов и портов для исходящих TCP- и UDP-сеансов
Когда хост 10.0.1.4 внутренней сети посылает во внешнюю сеть пакет серверу telnet, то он
вкачестве адреса назначения использует его глобальный адрес 136.56.28.8. Пакет поступает маршрутизатору R1, который знает, что путь к сети 136.56.0.0/16 идет через пограничный маршрутизатор R2. Модуль NAPT маршрутизатора R2 транслирует адрес 10.0.1.4 и порт TCP 1245 источника в глобально уникальный адрес 181.230.25.1 и уникально назначенный TCP-порт, в приведенном примере —3451. В таком виде пакет отправляется во внешнюю сеть и достигает сервера telnet. Когда получатель генерирует ответное сообщение, то он
вкачестве адреса назначения указывает единственный зарегистрированный глобальный адрес внутренней сети, являющийся адресом внешнего интерфейса NAPT-устройства. В поле номера порта получателя сервер помещает назначенный номер TCP-порта, взятый из поля порта отправителя пришедшего пакета. При поступлении ответного пакета на