Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел 2.docx
Скачиваний:
183
Добавлен:
16.03.2016
Размер:
3.19 Mб
Скачать

2. Источники опорного напряжения

В любой схеме стабилизатора компенсационного типа требуется опорное напряжение, с которым сравнивается величина выходного напряжения. Стабильность выходного напряжения стабилизатора не может быть выше стабильности его источника опорного напряжения. Источники опорного напряжения (ИОН) широко применяются также в качестве эталонной меры в аналого-цифровых и цифроаналоговых преобразователях, а также в разного рода пороговых устройствах.

Основное назначение ИОН — создавать образцовое напряжение, которое могло бы быть использовано электронными устройствами преобразования информации в качестве меры, эталона.

ИОН на стабилитронах

Простейший метод получения опорного напряжения состоит в том, что нестабилизированное входное напряжение прикладывают через токоограничивающий резистор к стабилитрону, который играет роль так называемого параметрического стабилизатора, чей основной параметр — напряжение пробоя обратносмещенного/ья-перехода (Рис. 5а.).

Полупроводниковый стабилитрон, представляющий собой разновидность диода обладает характерной вольтамперной характеристикой (Рис. 6).__

Рис. 5. Схемы ИОН на стабилитронах: а — параметрический ИОН, б — ИОН компенсационного типа

Рис. 6. Вольтамперная характеристика стабилитрона

При определенном обратном напряжении происходит пробой/?-п-перехода, причем вследствие конструктивных и технологических особенностей этот пробой не приводит к выходу прибора из строя. Участок вольтамперной характеристики, соответствующий режиму пробоя, расположен почти вертикально, так что при изменении тока через стабилитрон напряжение на нем меняется мало.

Качество стабилизации оценивается коэффициентом

Кст = VIN / VREF>

который называется коэффициентом стабилизации. Для схемы на Рис.5а коэффициен стабилизации

КСТ = 1 + R / r ~ R / r ст

и составляет обычно от 10 до 100. Здесь гст — дифференциальное (динамическое) сопротивление стабилитрона. Оно приблизительно обратно пропорционально току, протекающему через стабилитрон, поэтому при заданном входном напряжении увеличением сопротивления резистора R невозможно добиться повышения коэффициента стабилизации. Важным фактором для выбора стабилитрона является величина шумовой составляющей напряжения стабилизации, которая сильно возрастает при малых величинах тока. Недостатком схемы на Рис. 5а является относительно высокое выходное сопротивление (десятки Ом), которое также возрастает при уменьшении тока через стабилитрон. Другим недостатком является большой разброс напряжений стабилизации, который даже для прецизионных стабилитронов достигает 5% от номинального значения.

Существенного повышения коэффициента стабилизации можно достичь, если токоограничивающий резистор заменить источником стабильного тока, например на полевом транзисторе (Рис. 7).

В этом случае может превысить 1000.

Рис. 7. Источник опорного напряжения с полевым транзистором

Можно заметно улучшить характеристики источника опорного напряжения, если использовать в его составе операционный усилитель (Рис.56), т. е. выполнить ИОН по схеме стабилизатора напряжения компенсационного типа, Коэффициент стабилизации в такой схеме определяется главным образом коэффициентом подавления нестабильности питания А^пп в используемом ОУ и может достигать величины порядка 10000. Выходное сопротивление этой схемы составляет десятые доли Ом. Поскольку напряжения на входах ОУ практически равны, выходное напряжение ИОН

VOUT = VREF (1 + R2 /R1)

В схеме на Рис. 56 выходное напряжение ИОН не может быть меньше напряжения стабилизации стабилитрона. Если требуется более низкое напряжение, то между стабилитроном и неинвертирующим входом усилителя включается резистивный делитель. Так устроен, например, источник опорного напряжения AD586. Применение ОУ позволяет также путем подгонки соотношения сопротивлений резисторов R2 /R1 достичь высокой точности установки опорного напряжения.

В итоге, колебания выходного напряжения ИОН, выполненного по схеме на Рис. 5.б, при реальных изменениях входного напряжения и нагрузки не превышают 1 мВ. Существенно болешие значения имеют температурные колебания опорного напряжения. Температурный коэффициент напряжения стабилизации стабилитрона (ТКН) определяется как отношение относительного приращения напряжения стабилизации к приращению температуры

ТКН = VCT/ ( VCTT).

Для большинства стабилитронов он находится в пределах + /—1*10-3К-1.

Для малых напряжений стабилизации он отрицателен, для больших — положителен. Это вызвано тем, что в стабилитронах имеют место два механизма пробоя: туннельный, проявляющийся на низких напряжениях (его напряжение имеет отрицательный ТКН), и вторичный (зенеровский), для которого характерен положительный ТКН, существенный на больших напряжениях. Минимума по абсолютной величине этот коэффициент достигает при напряжениях стабилизации около 6 В, причем напряжение, соответствующее нулевому ТКН, зависит от тока через стабилитрон. Стабилитроны, имеющие ТКН в пределах +10-5 К-1, называют опорными диодами и обычно используют в схемах ИОН на напряжения, превышающие 7.5 В. Примером такого источника опорного напряжения может служить ИМС МАХ671С, обеспечивающая выходное напряжение 10 В с точностью 0.01% при КСТ = 20000, ТКН = 310-6 К-1 и токе потребления 9 мА. Другой пример — AD586 (отечественный аналог — 1009ЕН2) создает выходное напряжение 5 В с точностью 0.05% при А"сх = 10000, ТКН = 210-6 К-1 и токе потребления 3 мА.

Рекордными характеристиками для этого класса ИОН обладает 5-вольтовая ИМС VRE3050 производства фирмы «Thaler Corporation» — ТКН = 0.6-10-6 К-1, точность 0.01%, выходное сопротивление 0.025 Ом.

Для повышения температурной стабильности в некоторые ИМС источников опорного напряжения (например, LM199/299/399, отечественный аналог — 2С483) встраивают термостаты с нагревательным элементом. Обе части схемы (нагреватель и ИОН) изготавливаются на одном кристалле, который помещается в теплоизолированном корпусе. Это позволяет достичь ТКН < 1х10-6 К-1 в диапазоне температур—25°С...+85°С, причем время, требуемое для установления рабочего режима после включения, составляет всего 3 с. Недостаток такого решения — довольно большая мощность, потребляемая этим источником опорного напряжения (около 400 мВт при 25°С).__

Параметры источников опорного напряжения

Точностные параметры

Основное назначение ИОН — создавать образцовое напряжение, которое могло бы быть использовано электронными устройствами преобразования информации в качестве меры, эталона. Поэтому главное требование к ИОН —поддерживать выходное напряжение неизменным, равным номинальному значению в условиях изменяющегося входного напряжения, токов нагрузки, температуры окружающей среды и старения элементов.

К точностным параметрам ИОН относятся:

начальная точность установки выходного напряжения в нормальных условиях,

коэффициент стабилизации по входному напряжению,

коэффициент стабилизации по току нагрузки,

температурный коэффициент напряжения, тепловой гистерезис,

временная нестабильность, шум выходного напряжения.

Начальная точность установки выходного напряжения зависит в основном от технологических факторов. Отклонения выходного напряжения от номинального значения вызваны разбросом элементов, входящих в состав ИОН. Точность установки повышают путем лазерной подгонки сопротивлений резисторов схемы.

Коэффициент стабилизации по входному напряжению определяется как отношение приращения входного напряжения к вызываемому им приращению выходного напряжения ИОН:

КСТ = Vin /VREF

Иногда в справочниках приводится нестабильность по напряжению как абсолютное изменение выходного напряжения в мВ, процентах или миллионных долях (ppm) при изменении входного напряжения в заданных пределах. Повышение коэффициента стабилизации достигается увеличением коэффициента усиления контура регулирования.

Коэффициент стабилизации по току нагрузки характеризует стабильность выходного напряжения стабилизатора при изменении тока нагрузки. Обычно под этим коэффициентом понимают относительное изменение выходного напряжения при изменении тока нагрузки в заданных пределах в процентах или миллионных долях от номинальной величины. Используются также термины «нестабильность по току нагрузки» и «выходное дифференциальное сопротивление»:

VOUT = VREF //IL

которое измеряется в Ом. Этот параметр также существенно зависит от коэффициента усиления контура регулирования. Для уменьшения влияния выходного тока при работе ИОН на удаленную нагрузку широко используется кельвиновское (т. е. четырехпроводное) подключение (при этом напряжение обратной связи снимается непосредственно с входных зажимов питания устройства-потребителя). Для этого некоторые модели прецизионных ИОН, например AD588, имеют специальные выводы.

Выходное сопротивление для трехвыводных параллельных ИОН зависит от коэффициента передачи Р внешнего делителя в цепи обратной связи. Если ROUT — выходное сопротивление при отсутствии внешнего делителя, то при включении делителя оно увеличивается

Температурный коэффициент выходного напряжения характеризует нестабильность выходного напряжения ИОН при изменении температуры окружающей среды. Это вторая по важности после точности установки выходного напряжения (а в некоторых случаях даже первая) точностная характеристика. Для многих изготовителей измерительных приборов ТКН менее 10-6/°С позволяет избавиться от системной температурной калибровки — медленного и дорогостоящего процесса. Существует несколько методов определения ТКН. Один из них состоит в определении ТКН как тангенса угла наклона касательной к графику зависимости опорного напряжения от температуры:

ТНК = RREF/T ° . (5.18)

Однако в силу того, что эта зависимость не только не линейна, но даже и не монотонна, ТКН, определенный по формуле (5.18), сам очень сильно зависит от температуры. Обычно применяется метод поля, при котором задается поле допуска на отклонения опорного напряжения от номинального значения в заданном температурном диапазоне.

Рис. 8. График зависимости опорного напряжения прецизионного ИОН AD588 от температуры

На Рис. 8 представлен график зависимости опорного напряжения от температуры для прецизионного ИОН AD588. Эта зависимость (ее называют S-образной) характерна для ИОН на основе стабилитронов с так называемым ≪захороненным ≫ слоем (или скрытым Зене- ровским переходом). Очевидно, что ТКН, вычисленный по формуле (5.18), ни в какой мере не определяет действительные границы, в которых должно оставаться опорное напряжение при изменении температуры в рабочем диапазоне. Поэтому обычно ТКН вычисляют по формуле

. (5.19)

Например, для AD588 формула (5.19) дает ТКН = 0.95 • 10-6/°С Определенный таким образом ТКН равен тангенсу угла наклона диагонали прямоугольника, построенного на Рис. 8.

На вид зависимости опорного напряжения от температуры существенно влияет величина его начального значения.

Это вызвано тем, что, в свою очередь, величина опорного напряжения конкретного ИОН связана с точностью компенсации ТКН его базового опорного элемента . Недокомпенсация ведет к снижению RREF , а перекомпенсация наоборот, к его увеличению. На Рис. 9 приведены графики зависимости опорного напряжения от температуры для трех образцов ИОН типа TL431.

Рис. 9. Графики зависимостей опорного напряжения трех образцов ИОН TL431 от температуры

Видно, что при недокомпенсации в диапазоне температур преобладает отрицательный ТКН (если его определять по формуле (5.18)), а при перекомпенсации — положительный.

В справочниках часто приводится так называемая «температурная стабильность», под которой понимают относительное изменение выходного напряжения в процентах от номинальной величины при изменении температуры окружающей среды в допустимых для данной ИМС пределах. Используется также термин «температурный дрейф выходного напряжения», определяемый отношением RREF /( RREF_NOM T°) и измеряемый в мВ/(°С * В).

Тепловой гистерезис — неоднозначность изменения опорного напряжения в результате изменения температуры. Он проявляется в том, что при нагреве ИОН и последующем возврате к исходной температуре, его опорное напряжение не всегда принимает первоначальное значение. Тепловой гистерезис трудно компенсировать, и зачастую он является главным источником погрешности при температурных колебаниях с амплитудой 25°С и больше. Изготовители ИОН сравнительно недавно начали включать данные о тепловом гистерезисе своих изделий в техническую документацию. Например, для ИОН на ширине запрещенной зоны МАХ6250 тепловой гистерезис при изменении температуры в последовательности 25°С —> 50°С —> 25°С равен 20 мкВ, что сопоставимо с отклонением опорного напряжения при изменении температуры на 7°С.__

Рис. 10. График спектральной плотности шума для прецизионного ИОН AD588

Долговременная нестабильность (временной дрейф) определяет относительное изменение выходного напряжения в процентах от номинального значения за 1000 часов работы при температуре окружающей среды, соответствующей верхней границе рабочего диапазона. Для ИОН на стабилитронах типичное значение временного дрейфа составляет 610-6 за 1000 часов и уменьшается по затухающей экспоненте. Дополнительная термотренировка улучшает временную стабильность ИОН на стабилитроне. XFET источники опорного напряжения имеют превосходную долговременную стабильность — 0.2*10-6 за 1000 часов.

Шум опорного напряжения характерен для ИОН, так же как и для ОУ, но интенсивность шума ИОН значительно превосходит таковую для ОУ. Шум опорного напряжения вносит ошибку в измерения. В опорном напряжении преобладают два типа шума: фликкер-шум (1/f) и тепловой (белый). График спектральной плотности шума опорного напряжения для прецизионного AD588 представлен на Рис.10.Широкополосный тепловой шум может быть заметно сглажен путем подключения параллельно выходу ИОН конденсатора. На Рис. 11 можно видеть степень влияния на спектральную плотность шума ИМС МАХ6225 конденсатора емкостью 1 мкФ, подключенного параллельно выходу ИМС.

Рис. 11. Влияние шунтирующего конденсатора на спектральную плотность шума

Однако не все модели ИОН допускают непосредственное подключение конденсатора без потери устойчивости Решением здесь может быть подключение нагрузки к ИОН через RC-фильтр первого порядка. На Рис. 12 приведен график зависимости действующего значения напряжения шума на выходе RC -фильтра, подключенного к ИОН типа LT1004-2.5 от его частоты среза.

Рис. 12. График зависимости действующего значения шума опорного напряжения ИОН от частоты среза выходного фильтра

Поскольку в отличие от ОУ выходное напряжение ИОН меняться не должно, можно использовать фильтр с большой постоянной времени.

К сожалению, применение /?С-фильтра приводит к увеличению выходного сопротивления ИОН на низких частотах. Это нежелательно, если входное сопротивление приемника сигнала от ИОН низкое, особенно если оно меняется, как, например у цифроаналогового преобразования с инверсной резистивной матрицей. Поэтому сопротивление резистора фильтра выбирают порядка 20 Ом.

В стабилитронных ИОН конденсатор для снижения шума может быть подключен непосредственно параллельно стабилитрону либо параллельно неинвертирующему входу усилителя, входящего в состав ИОН (см. Рис. 56), как это, например, предусмотрено у прецизионного AD587. При этом условия устойчивости ИОН не ухудшаются, поскольку конденсатор не входит в контур обратной связи.

К основным динамическим параметрам источников опорного напряжения относятся коэффициент подавления пульсаций, полное выходное сопротивление и время установления после включения.

Коэффициент подавления пульсаций Кцц определяется как отношение (в дБ) амплитуд основной гармоники пульсаций напряжения на выходе и входе ИОН при его питании от пульсирующею напряжения (например, выходным напряжением двухполупериодного выпрямителя без фильтра). Обычно приводится в технической документации в виде частотной характеристики. Значение этого коэффициента в области низких частот определяется частотной характеристикой контура регулирования ИОН, в частности коэффициентом усиления петли и частотой среза, а в области высоких частот — емкостью и частотными свойствами выходного конденсатора, если он есть. На Рис. 13 представлен график зависимости коэффициента подавления пульсаций от частоты для AD291.__

Рис. 13. График зависимости коэффициента подавления пульсаций от частоты для ИМС AD291

Рис. 14. Графики зависимости от частоты модуля полного выходного сопротивления ИМС МАХ6225

Полное выходное сопротивление Z0UT характеризует способность источника опорного напряжения компенсировать изменение выходного напряжения при изменении тока нагрузки. Задается, как правило, в виде графика в функции от частоты изменения тока нагрузки. Так же, как и Кпп в области низких частот определяется усилительными свойствами контура регулирования, а в области высоких частот полным сопротивлением выходного конденсатора. На Рис. 14 представлены графики зависимости от частоты модуля полного выходного сопротивления ИМС МАХ6225 для втекающего / етек> и вытекающего / вытек. Выходных токов силой 5 мА.

В фирменных описаниях микросхем ИОН часто приводятся графики переходных характеристик — зависимости от времени опорного напряжения при скачкообразном изменении входного напряжения или тока нагрузки.

Время установления после включения — время, в течение которого опорное напряжение устанавливается с заданной точностью после подачи питания. У большинства ИОН опорное напряжение устанавливается до 0.1% за время менее 10 мкс. Этот параметр важен для систем с батарейным питанием, поскольку в этом случае целесообразно подавать питание на узлы системы только на короткое время их работы.

К важнейшим эксплуатационным параметрам ИОН относятся:

• диапазон допустимых входных напряжений;

• максимально допустимый ток нагрузки;

• максимально допустимая рассеиваемая мощность;

• минимально допустимое напряжение между входом и выходом ИОН при максимальном или дополнительно оговоренном токе нагрузки;

• ток, потребляемый ИОН в режиме холостого хода (часто называемый током утечки);

• допустимый диапазон температур окружающей среды.

В фирменных описаниях микросхем ИОН часто приводятся графики переходных характеристик — зависимости от времени опорного напряжения при скачкообразном изменении входного напряжения или тока нагрузки.

Время установления после включения — время, в течение которого опорное напряжение устанавливается с заданной точностью после подачи питания. У большинства ИОН опорное напряжение устанавливается до 0.1% за время менее 10 мкс. Этот параметр важен для систем с батарейным питанием, поскольку в этом случае целесообразно подавать питание на узлы системы только на короткое время их работы.

К важнейшим эксплуатационным параметрам ИОН относятся:

• диапазон допустимых входных напряжений;

• максимально допустимый ток нагрузки;

• максимально допустимая рассеиваемая мощность;

• минимально допустимое напряжение между входом и выходом ИОН при максимальном или дополнительно оговоренном токе нагрузки;

• ток, потребляемый ИОН в режиме холостого хода (часто называемый током утечки);

• допустимый диапазон температур окружающей среды.

Таблица 5.2. Основные параметры ИС источников опорного напряжения

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]