Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
2
Добавлен:
11.03.2016
Размер:
610.3 Кб
Скачать

Леонардо да

Винчи и Ф. Бэкон возрождают антич. идею индукции и индуктивного метода, выступая с резкой критикой силлогизма. Лишь немногие, подобно падуанцу Я. Дзабарелле («Логич. труды» — «Opera logica», 1578), отстаивают формальную дедукцию как основу науч. метода вообще. В нач. 17 в. положение Л. меняется. Г. Галилей вводит в науч. обиход понятие о гипотетико-дедуктивном методе: он восстанавливает права абстракции, обосновывает потребность в абстракциях, к-рые «восполняли» бы данные опытных наблюдений, и указывает на необходимость введения этих абстракций в систему логич. дедукции в качестве гипотез, или постулатов (аксиом), с последующим сравнением результатов дедукции с результатами наблюдений. Т. Гоббс истолко-вывает аристотелевскую силлогистику как основанное на соглашениях исчисление истинностных функций — суждений именования, заменяя, по примеру стоиков, атрибутивные связи пропозицивнальными. П. Гассен-ди пишет историю Л., а картезианцы А. Арно и Н. Ни-коль —

«Логику, или Искусство мыслить» («La logique ou L'art de penser», 1662), т. н. логику Пор-Рояля, в к-рой Л. представлена как рабочий инструмент всех др. наук и практики, поскольку она принуждает к строгим формулировкам мысли. Сам Декарт реабилитирует дедукцию (из аксиом) как «верный путь» к познанию, подчиняя её более точному методу всеобщей науки о «порядке и мере» — mathesis universalis, простейшими примерами к-рой он считал алгебру и геометрию. В том же духе работали И. Юнг («Гамбургская логика» — «Logica Hamburgiensis», 1638), В. Паскаль («О геометрич. разуме» — «De l'esprit geometrique»), А. Гейлинкс («Логика...» — «Logica...», ?662), Дж.

Сак-кери («Наглядная

логика» — «Logica demonstrative», 1697) и в особенности Г. Лейбниц, к-рый идею

ma-thesis

universalis доводит до идеи calculus rationa-tor — универсального искусств.

языка, формализующего

рассуждения подобно тому, как в алгебре формализованы вычисления. Этим путём

Лейбниц

надеялся

318 ЛОГИКА

расширить границы демонстративного познания, к-рые до тех пор, по его мнению, почти совпадали с границами математики. Он отмечал важность тождеств. истин («бессодержат. предложений») Л. для мышления, а в универсальном языке видел возможность «общей Л.», частными случаями к-рой считал силлогистику и Л. евклидовских «Начал». Лейбниц не осуществил своего замысла, но он дал арифметизацию силлогистики, разрешив тем самым совершенно новый для Л. вопрос —

о её

непротиворечивости относительно арифметики.

Программа Лейбница не вызвала всеобщего признания, хотя её поддержали Дж. Валлис («Логиче-ское учение» — «Institutio logicae», 1729), Г. Плуке («Филос. и теоретич. описания» — «Expositiones pliilo-sophiae theoreticae», 1782), И. Ламберт («Новый органон» — «Neues Organon», 1764). Благодаря их трудам внутри филос. Л., не связанной с точными методами анализа рассуждений и носящей преим. описат. характер, сложились реальные предпосылки для развития математич. Л. Однако это развитие до сер. 19 в. было приостановлено авторитетами Канта и Гегеля, считавших, что формальная Л.— это не алгебра, с помощью к-рой можно обнаруживать скрытые истины, что она не нуждается ни в каких новых изобретениях, а потому оценивших математич.

направление как не

имеющее существ. применения.

Между тем запросы развивающегося естествознания оживили почти забытое индуктивное направление в Л,— т. н. Л. науки. Инициаторами этого направления стали Дж. Гершель (1830), У.

Уэвелл (1840), Дж. С. Милль (1843). Последний, по примеру Ф. Бэкона, сделал индукцию отправной точкой критики дедукции, приписав всякому умозаключению (в основе) индуктивный характер и противопоставив силлогизму свои методы анализа причинных связей (т. н. каноны Бэкона — Милля).

Критика эта, однако, не повлияла на то направление логич. мысли, к-рое наследовало идеи Лейбница.

Напротив, скорее как ответ на эту критику (и, в частности, на критику идей У. Гамильтона о логич. уравнениях) почти одновременно появились обобщённая силлогистика О. де Моргана (1847), вклю-чившая Л. отношений и понятие о вероятностном выводе, и «Математич. анализ логики» («The mathematical analysis of logic», 1847) Дж. Буля, в к-ром автор переводит силлогизм на язык алгебры, а совершенство дедуктивного метода Л. рассматривает как свидетельство истинности её принципов.

Позднее Буль («Исследование законов мысли» — «An investigation of the laws of thought...», 1854), С.

Джевонс («Чистая логика» — «Pure logic», 1864), Ч. Пирс («Об алгебре логики» —

«On the algebra of logic», 1880), Дж. Венн («Сим-волич. логика» — «Symbolic logic», 1881), П. С. Порец-кий («О способах решения логич. равенств...», 1884) и Э. Шредер («Лекции по алгебре логики» — «Vorle-sungen uber die Algebra der Logik», 1890—1905) окончательно опровергли тезис о неалгебраич. характере форм мысли, создав теорию «законов мысли» как вид нечисловой алгебры. Эта реформация в Л. коснулась не только силлогистики (логики классов). В 1877 X. Мак-Колл впервые после схоластов обращается к теории критериев логич. следования и к Л. высказываний, а Г. Фреге («Исчисление понятий» — «Begriffsschrift», 1879) создаёт первое исчисление высказываний в строго аксиоматич. форме. Он обобщает тра-диц. понятие предиката до понятия пропозициональной функции, существенно расширяющего возможности отображения смысловой структуры фраз естеств. языка в формализме субъектно-нредикатного типа и одновременно сближающего этот формализм с функциональным языком математики. Опираясь на идеи предшественников, Фреге предложил реконструкцию традиц. теории дедукции на основе искусств. языка (исчисления), обеспечивающего полное выявление логич. структуры мысли, всех элементарных шагов рассужде-ния, требуемых исчерпывающим доказательством, и полного перечня осн. принципов: определений, постулатов, аксиом, положенных в основу дедукции. Фреге использует созданный им язык Л. для формализации арифметики. Ту же задачу, но на основе более простого языка, осуществляют Дж.

Пеано и его школа («Формуляр математики» — «Formulaire de mathematique», t. 1—2, 1895—97).

Очевидным успехом движения за математизацию Л. явилось его признание на 2-м Филос. конгрессе в Женеве (1904), хотя в обществ. мнении оно утвердилось не сразу. Гл. идейным противником применения мате-матич. методов к системе логич. понятий был психологизм в логике, к-рый воспринимал математизацию Л. как своего рода возрождение схоластики, менее всего способное поставить логические исследования на научный фундамент. Однако именно в этом своём пункте психологизм оказался антиисторичен. Борьба за математизацию Л. привела к мощному развитию этой науки.

После «Principle Mathematica» (1910—13) Б. Рассела и А. Уайтхеда — трёхтомного труда, систематизировавшего дедуктивно-аксиоматич. построение классич. Л. (см. Логицизм), создаётся многозначная Л. (Я. Лу-касевич, Э. Пост, 1921), аксиоматизируются модальная (К. Льюис, 1918) и интуиционистская Л. (В. Гливенко, 1928; А. Гейтинг, 1930). Но главные исследования переносятся в область теории доказательств: уточняются правила и способы построения исчислений и изучаются их осн. свойства — независимость постулатов (П. Бер-найс, 1918; К. Гёдель, 1930), непротиворечивость (Пост, 1920; Д. Гильберт и В. Аккерман, 1928; Ж. Эр-бран, 1930) и полнота (Пост, 1920; Гёдель, 1930), появляются классические работы по логической семантике (А. Тарский, 1931) и теории моделей (Л. Лёвен-хейм, 1915; Т. Скулем, 1919; Гёдель, 1930;

А.И.Мальцев, 1936).

Начиная с 1930-х гг. закладываются основы изучения «машинного мышления» (теория

алгоритмов

  • Гёдель, Эрбран, С. Клини, А. Тьюринг, А. Чёрч, Пост, А. А. Марков, А. Н.

Колмогоров и другие).

И хотя выясняется ограниченность этого мышления, проявляющаяся, напр., в алгоритмич. неразрешимости ряда логич. проблем (Гёдель, 1931; П. С. Новиков, 1952), в невыразимости всех содержат, истин в к.-л. едином формальном языке (Гёдель, 1931), а тем самым и невыполнимость лейбницевской идеи создания каталога всех истин вместе с их формальными доказательствами, всё же растёт сирое на применение Л. в вычислит. математике, кибернетике, технике (первоначально в форме алгеб-раич. теории релейно-контактных схем, а затем в форме более общей теории анализа и синтеза конечных автоматов, теории алгоритмов и пр.), а также в гуманитарных науках: психологии, лингвистике, экономике. Совр. Л.— это не только инструмент точной мысли, но и «мысль» первого точного инструмента, электронного автомата, непосредственно в роли партнёра включённого человеком в сферу решения интеллектуальных задач но обработке (хранению, анализу, вычислению, моделированию, классификации) и передаче информации в любой, области знания и практики.

  • Аристотель, Соч., т. 2, М., 1978; Лукасевич Я., Аристотелевская силлогистика с т. зр. совр. формальной Л., пер. с англ., М., 1959; M и л л ь Д ж. С., Система Л. силлогистической и индуктивной, пер. с англ., М., 19142; Гильберт Д.,Аккерман В., Основы теоретич. Л., пер. с нем., М., 1947; Тарский А., Введение в Л. и методологию дедуктивных наук, пер. с англ., М., 1948; Чёрч А., Введение в ма-тематич. Л., пер. с англ., т. 1, М., 1960;

Попов П. С., История Л. нового времени, М.,

1960; Маковельский А. О., История Л., М., 1967; С т я ж к и н Н. И., Формирование ма-тематич. Л., М., 1967;

Математич. теория логич. вывода. Сб. переводов, М., 1967; Карри X. Б., Основания математич. Л., пер. с англ., М., 1969;

Марков А. А.,О логике конструктивной математики, М., 1972; Н о в и к о в П. С., Элементы математич. Л., M., 19732; К л и н н С. К., Математич. Л., пер, с англ., М., 1973; ? ей с Р., Модальная Л., пер. с англ., М., 1974; Попов П. С., С т я ж к и н Н. И., Развитие логич.

идей от античности до эпохи Возрождения, М., 1974; Философия в совр. мире.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в папке ФИЛ. ЭНЦ. Словарь 1983