Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 ВАРИАНТ Комплексные Соединения (2).doc
Скачиваний:
176
Добавлен:
06.03.2016
Размер:
768.51 Кб
Скачать

7.10. Хелаты

C 59. Хелаты, или циклические комплексные соединения. Хелатами называют комплексные соединения, внутрення сфера которых состоит из циклических группировок, включающих комплексообразователь. Например, -аминоуксусная кислота (глицин) может реагировать с гидроксидом меди с образованием сине-фиолетового прочного комплекса, растворимого в воде:

Cu(OH)2 + 2 NH2CH2COOH = [Cu(NH2CH2COO)2] + 2 H2O

Лиганд NH2CH2COO (глицинат-ион) относят к категории бидентатных лигандов, образующих две химические связи с комплексообразователем – через атом кислорода карбоксильной группы и через атом азота аминогруппы:

Внутренняя сфера комплекса содержит два замкнутых пятичленных цикла, в связи с чем полученный комплекс отличается высокой устойчивостью. Константа образования диглицинатомеди(II) 2 равна 1,8 1015.

С 60. Важное значение в химико-аналитической практике имеет открытая Л. А. Чугаевым реакция взаимодействия диметилглиоксима с катионами никеля(II) в аммиачной среде, приводящая к образованию малорастворимого ярко-красного комплексного соединения бис(диметилглиоксимато)никеля(II)

Функции лиганда в этом комплексном соединении выполняет диметилглиоксимат-анион

образующий две химические связи с комплексообразователем, вследствие чего получаются два пятичленных циклических фрагмента, упрочняющих комплекс.

Строение получаемого хелата плоское; благодаря внутримолекулярным водородным связям (между лигандами) образуются еще две шестичленные циклические группировки, включающие атомы никеля и стабилизирующие частицу комплекса.

Реакция Чугаева очень чувствительна и селективна по отношению к катионам никеля(II) и позволяют уверенно определить его присутствие в любых химических объектах, а получаемый хелатный комплекс используется как пигмент.

7.11. Многоядерные комплексные соединения.

К этому типу комплексов относят

  • кластеры

  • мостиковые соединения

  • изо- и гетерополисоединения

Эти типы комплексов обычно рассматриваются при изучении химии элементов по группам Периодической системы.

Глава 8. Элементы Периодической системы д.И. Менделеева: способность к образованию комплексов

8.1. Элементы s-секции 8.2. Элементы p-секции 8.3. Элементы d-секции 8.4. Лантаноиды и актиноиды

Способность химического элемента образовывать комплексы является одним из его важнейших свойств и определяется в основном строением электронной оболочки, т.е. положением элемента в Периодической системе Д.И. Менделеева. Под способностью элемента к комплексообразованию можно понимать как устойчивость образуемых ими комплексов, так и разнообразие их типов.

Для качественной сравнительной характеристики комплексообразующей способности элементов целесообразнее использовать способность элементов давать наибольшее количество комплексных соединений основных типов. Элементы, образующие лишь отдельные типы комплексных соединений, будем называть нетипичными комплексообразователями.

Ниже приводится краткий обзор комплексообразующей способности элементов в соответствии с их расположением в Периодической системе.